留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 3
Mar.  2022

图(13)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  5126
  • HTML全文浏览量:  1416
  • PDF下载量:  443
  • 被引次数: 0
Zhuo Cheng, Shuize Wang, Guilin Wu, Junheng Gao, Xusheng Yang, and Honghui Wu, Tribological properties of high-entropy alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 389-403. https://doi.org/10.1007/s12613-021-2373-4
Cite this article as:
Zhuo Cheng, Shuize Wang, Guilin Wu, Junheng Gao, Xusheng Yang, and Honghui Wu, Tribological properties of high-entropy alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 3, pp. 389-403. https://doi.org/10.1007/s12613-021-2373-4
引用本文 PDF XML SpringerLink
特约综述

高熵合金的摩擦学性能研究进展

  • 通讯作者:

    汪水泽    E-mail: wangshuize@ustb.edu.cn

    吴宏辉    E-mail: wuhonghui@ustb.edu.cn

文章亮点

  • (1) 系统地介绍了高熵合金的摩擦学行为。
  • (2) 重点关注高熵合金磨损后亚表面的微观组织演变。
  • (3) 深刻剖析了高熵合金基本的摩擦磨损机理。
  • 摩擦学是研究摩擦、磨损和润滑的学科,对结构材料的服役性能有很大影响。正因如此,学者除了不断探索具有优异力学性能的结构材料外,也不断寻求具备高耐磨性能的金属材料。在摩擦学领域,传统的金属材料已经发展成熟,新型耐磨材料亟待开发。近年来,新兴的高熵合金表现出优异的硬度、抗氧化性、抗软化能力,在很大程度上丰富了现有的耐磨合金体系,在未来的新型耐磨材料领域有很大的应用前景。为了系统地剖析高熵合金的摩擦学行为,本文首先介绍了单相、双相和多相高熵合金以及与高熵合金有关的复合材料在室温下的摩擦学特性,进而总结了改善高熵合金耐磨性能的方法。此外,本文还讨论了高熵合金在高温下的耐磨性能,并对其作为耐磨合金的应用与发展作了展望。

  • Invited Review

    Tribological properties of high-entropy alloys: A review

    + Author Affiliations
    • Tribology, which is the study of friction, wear, and lubrication, largely deals with the service performance of structural materials. For example, newly emerging high-entropy alloys (HEAs), which exhibit excellent hardness, anti-oxidation, anti-softening ability, and other properties, enrich the wear-resistance alloy family. To demonstrate the tribological behavior of HEAs systematically, this review first describes the basic tribological characteristics of single-, dual-, and multi-phase HEAs and HEA composites at room temperature. Then, it summarizes the strategies that improve the tribological property of HEAs. This review also discusses the tribological performance at elevated temperatures and provides a brief perspective on the future development of HEAs for tribological applications.

    • loading
    • [1]
      D.B. Miracle and O.N. Senkov, A critical review of high entropy alloys and related concepts, Acta Mater., 122(2017), p. 448. doi: 10.1016/j.actamat.2016.08.081
      [2]
      Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Microstructures and properties of high-entropy alloys, Prog. Mater. Sci., 61(2014), p. 1. doi: 10.1016/j.pmatsci.2013.10.001
      [3]
      B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Microstructural development in equiatomic multicomponent alloys, Mater. Sci. Eng. A, 375-377(2004), p. 213. doi: 10.1016/j.msea.2003.10.257
      [4]
      J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang, Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes, Adv. Eng. Mater., 6(2004), No. 5, p. 299. doi: 10.1002/adem.200300567
      [5]
      W.R. Zhang, P.K. Liaw, and Y. Zhang, Science and technology in high-entropy alloys, Sci. China Mater., 61(2018), No. 1, p. 2. doi: 10.1007/s40843-017-9195-8
      [6]
      Z.M. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan, Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off, Nature, 534(2016), No. 7606, p. 227. doi: 10.1038/nature17981
      [7]
      T. Yang, Y.L. Zhao, Y. Tong, Z.B. Jiao, J. Wei, J.X. Cai, X.D. Han, D. Chen, A. Hu, J.J. Kai, K. Lu, Y. Liu, and C.T. Liu, Multicomponent intermetallic nanoparticles and superb mechanical behaviors of complex alloys, Science, 362(2018), No. 6417, p. 933. doi: 10.1126/science.aas8815
      [8]
      P.J. Shi, R.G. Li, Y. Li, Y.B. Wen, Y.B. Zhong, W.L. Ren, Z. Shen, T.X. Zheng, J.C. Peng, X. Liang, P.F. Hu, N. Min, Y. Zhang, Y. Ren, P.K. Liaw, D. Raabe, and Y.D. Wang, Hierarchical crack buffering triples ductility in eutectic herringbone high-entropy alloys, Science, 373(2021), No. 6557, p. 912. doi: 10.1126/science.abf6986
      [9]
      Q.S. Pan, L.X. Zhang, R. Feng, Q.H. Lu, K. An, A.C. Chuang, J.D. Poplawsky, P.K. Liaw, and L. Lu, Gradient cell-structured high-entropy alloy with exceptional strength and ductility, Science, 374(2021), No. 6570, p. 984. doi: 10.1126/science.abj8114
      [10]
      P.J. Shi, Y.B. Zhong, Y. Li, W.L. Ren, T.X. Zheng, Z. Shen, B. Yang, J.C. Peng, P.F. Hu, Y. Zhang, P.K. Liaw, and Y.T. Zhu, Multistage work hardening assisted by multi-type twinning in ultrafine-grained heterostructural eutectic high-entropy alloys, Mater. Today, 41(2020), p. 62. doi: 10.1016/j.mattod.2020.09.029
      [11]
      B. Gwalani, S. Dasari, A. Sharma, V. Soni, S. Shukla, A. Jagetia, P. Agrawal, R.S. Mishra, and R. Banerjee, High density of strong yet deformable intermetallic nanorods leads to an excellent room temperature strength–ductility combination in a high entropy alloy, Acta Mater., 219(2021), art. No. 117234. doi: 10.1016/j.actamat.2021.117234
      [12]
      S.Q. Yuan, B. Gan, L. Qian, B. Wu, H. Fu, H.H. Wu, C.F. Cheung, and X.S. Yang, Gradient nanotwinned CrCoNi medium-entropy alloy with strength–ductility synergy, Scripta Mater., 203(2021), art. No. 114117. doi: 10.1016/j.scriptamat.2021.114117
      [13]
      R. Feng, Y. Rao, C.H. Liu, X. Xie, D.J. Yu, Y. Chen, M. Ghazisaeidi, T. Ungar, H.M. Wang, K. An, and P.K. Liaw, Enhancing fatigue life by ductile-transformable multicomponent B2 precipitates in a high-entropy alloy, Nat. Commun., 12(2021), art. No. 3588. doi: 10.1038/s41467-021-23689-6
      [14]
      Z.F. Lei, Y. Wu, J.Y. He, X.J. Liu, H. Wang, S.H. Jiang, L. Gu, Q.H. Zhang, B. Gault, D. Raabe, and Z.P. Lu, Snoek-type damping performance in strong and ductile high-entropy alloys, Sci. Adv., 6(2020), No. 25, art. No. eaba7802. doi: 10.1126/sciadv.aba7802
      [15]
      H. Luo, Z.M. Li, A.M. Mingers, and D. Raabe, Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution, Corros. Sci., 134(2018), p. 131. doi: 10.1016/j.corsci.2018.02.031
      [16]
      T.T. Zuo, X. Yang, P.K. Liaw, and Y. Zhang, Influence of Bridgman solidification on microstructures and magnetic behaviors of a non-equiatomic FeCoNiAlSi high-entropy alloy, Intermetallics, 67(2015), p. 171. doi: 10.1016/j.intermet.2015.08.014
      [17]
      N.A.P.K. Kumar, C. Li, K.J. Leonard, H. Bei, and S.J. Zinkle, Microstructural stability and mechanical behavior of FeNiMnCr high entropy alloy under ion irradiation, Acta Mater., 113(2016), p. 230. doi: 10.1016/j.actamat.2016.05.007
      [18]
      Y.X. Ye, C.Z. Liu, H. Wang, and T.G. Nieh, Friction and wear behavior of a single-phase equiatomic TiZrHfNb high-entropy alloy studied using a nanoscratch technique, Acta Mater., 147(2018), p. 78. doi: 10.1016/j.actamat.2018.01.014
      [19]
      M.H. Chuang, M.H. Tsai, W.R. Wang, S.J. Lin, and J.W. Yeh, Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys, Acta Mater., 59(2011), No. 16, p. 6308. doi: 10.1016/j.actamat.2011.06.041
      [20]
      F. Ren, S.N. Arshad, P. Bellon, R.S. Averback, M. Pouryazdan, and H. Hahn, Sliding wear-induced chemical nanolayering in Cu–Ag, and its implications for high wear resistance, Acta Mater., 72(2014), p. 148. doi: 10.1016/j.actamat.2014.03.060
      [21]
      C. Greiner, J. Gagel, and P. Gumbsch, Solids under extreme shear: Friction-mediated subsurface structural transformations, Adv. Mater., 31(2019), No. 26, art. No. 1806705. doi: 10.1002/adma.201806705
      [22]
      K. Holmberg, P. Andersson, and A. Erdemir, Global energy consumption due to friction in passenger cars, Tribol. Int., 47(2012), p. 221. doi: 10.1016/j.triboint.2011.11.022
      [23]
      J.F. Archard, Contact and rubbing of flat surfaces, J. Appl. Phys., 24(1953), No. 8, p. 981. doi: 10.1063/1.1721448
      [24]
      I. Basu and J.T.M. De Hosson, Strengthening mechanisms in high entropy alloys: Fundamental issues, Scripta Mater., 187(2020), p. 148. doi: 10.1016/j.scriptamat.2020.06.019
      [25]
      Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, and Y. Yang, High-entropy alloy: Challenges and prospects, Mater. Today, 19(2016), No. 6, p. 349. doi: 10.1016/j.mattod.2015.11.026
      [26]
      C. Greiner, Z.L. Liu, L. Strassberger, and P. Gumbsch, Sequence of stages in the microstructure evolution in copper under mild reciprocating tribological loading, ACS Appl. Mater. Interfaces, 8(2016), No. 24, p. 15809. doi: 10.1021/acsami.6b04035
      [27]
      C. Nagarjuna, H.J. You, S. Ahn, J.W. Song, K.Y. Jeong, B. Madavali, G. Song, Y.S. Na, J.W. Won, H.S. Kim, and S.J. Hong, Worn surface and subsurface layer structure formation behavior on wear mechanism of CoCrFeMnNi high entropy alloy in different sliding conditions, Appl. Surf. Sci., 549(2021), art. No. 149202. doi: 10.1016/j.apsusc.2021.149202
      [28]
      A. Dollmann, A. Kauffmann, M. Heilmaier, C. Haug, and C. Greiner, Microstructural changes in CoCrFeMnNi under mild tribological load, J. Mater. Sci., 55(2020), No. 26, p. 12353. doi: 10.1007/s10853-020-04806-0
      [29]
      Y.S. Geng, J. Chen, H. Tan, J. Cheng, J. Yang, and W.M. Liu, Vacuum tribological behaviors of CoCrFeNi high entropy alloy at elevated temperatures, Wear, 456-457(2020), art. No. 203368. doi: 10.1016/j.wear.2020.203368
      [30]
      B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie, A fracture-resistant high-entropy alloy for cryogenic applications, Science, 345(2014), No. 6201, p. 1153. doi: 10.1126/science.1254581
      [31]
      Z. Wu, H. Bei, G.M. Pharr, and E.P. George, Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures, Acta Mater., 81(2014), p. 428. doi: 10.1016/j.actamat.2014.08.026
      [32]
      A.J. Zaddach, C. Niu, C.C. Koch, and D.L. Irving, Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy, JOM, 65(2013), No. 12, p. 1780. doi: 10.1007/s11837-013-0771-4
      [33]
      I.V. Kireeva, Y.I. Chumlyakov, Z.V. Pobedennaya, I.V. Kuksgausen, and I. Karaman, Orientation dependence of twinning in single crystalline CoCrFeMnNi high-entropy alloy, Mater. Sci. Eng. A, 705(2017), p. 176. doi: 10.1016/j.msea.2017.08.065
      [34]
      G. Laplanche, A. Kostka, O.M. Horst, G. Eggeler, and E.P. George, Microstructure evolution and critical stress for twinning in the CrMnFeCoNi high-entropy alloy, Acta Mater., 118(2016), p. 152. doi: 10.1016/j.actamat.2016.07.038
      [35]
      M.X. Yang, D.S. Yan, F.P. Yuan, P. Jiang, E. Ma, and X.L. Wu, Dynamically reinforced heterogeneous grain structure prolongs ductility in a medium-entropy alloy with gigapascal yield strength, Proc. Natl. Acad. Sci. U. S. A., 115(2018), No. 28, p. 7224. doi: 10.1073/pnas.1807817115
      [36]
      L. Yang, Z. Cheng, W.W. Zhu, C.C. Zhao, and F.Z. Ren, Significant reduction in friction and wear of a high-entropy alloy via the formation of self-organized nanolayered structure, J. Mater. Sci. Technol., 73(2021), p. 1. doi: 10.1016/j.jmst.2020.08.065
      [37]
      N.R. Tao and K. Lu, Nanoscale structural refinement via deformation twinning in face-centered cubic metals, Scripta Mater., 60(2009), No. 12, p. 1039. doi: 10.1016/j.scriptamat.2009.02.008
      [38]
      X.B. Guo, I. Baker, F.E. Kennedy, S.P. Ringer, H.S. Chen, W.D. Zhang, Y. Liu, and M. Song, A comparison of the dry sliding wear of single-phase f.c.c. carbon-doped Fe40.4Ni11.3Mn34.8Al7.5Cr6 and CoCrFeMnNi high entropy alloys with 316 stainless steel, Mater. Charact., 170(2020), art. No. 110693. doi: 10.1016/j.matchar.2020.110693
      [39]
      O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle, Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys, Intermetallics, 19(2011), No. 5, p. 698. doi: 10.1016/j.intermet.2011.01.004
      [40]
      Y.D. Wu, Y.H. Cai, T. Wang, J.J. Si, J. Zhu, Y.D. Wang, and X.D. Hui, A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties, Mater. Lett., 130(2014), p. 277. doi: 10.1016/j.matlet.2014.05.134
      [41]
      R.R. Eleti, T. Bhattacharjee, A. Shibata, and N. Tsuji, Unique deformation behavior and microstructure evolution in high temperature processing of HfNbTaTiZr refractory high entropy alloy, Acta Mater., 171(2019), p. 132. doi: 10.1016/j.actamat.2019.04.018
      [42]
      T.D. Huang, S.Y. Wu, H. Jiang, Y.P. Lu, T.M. Wang, and T.J. Li, Effect of Ti content on microstructure and properties of TixZrVNb refractory high-entropy alloys, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1318. doi: 10.1007/s12613-020-2040-1
      [43]
      O.N. Senkov, S.V. Senkova, and C. Woodward, Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys, Acta Mater., 68(2014), p. 214. doi: 10.1016/j.actamat.2014.01.029
      [44]
      S. Alvi and F. Akhtar, High temperature tribology of CuMoTaWV high entropy alloy, Wear, 426-427(2019), p. 412. doi: 10.1016/j.wear.2018.12.085
      [45]
      Y.X. Guo and Q.B. Liu, MoFeCrTiWAlNb refractory high-entropy alloy coating fabricated by rectangular-spot laser cladding, Intermetallics, 102(2018), p. 78. doi: 10.1016/j.intermet.2018.09.005
      [46]
      A. Poulia, E. Georgatis, and A. Karantzalis, Evaluation of the microstructural aspects, mechanical properties and dry sliding wear response of MoTaNbVTi refractory high entropy alloy, Met. Mater. Int., 25(2019), No. 6, p. 1529. doi: 10.1007/s12540-019-00283-6
      [47]
      C. Mathiou, A. Poulia, E. Georgatis, and A.E. Karantzalis, Microstructural features and dry-sliding wear response of MoTaNbZrTi high entropy alloy, Mater. Chem. Phys., 210(2018), p. 126. doi: 10.1016/j.matchemphys.2017.08.036
      [48]
      M. Pole, M. Sadeghilaridjani, J. Shittu, A. Ayyagari, and S. Mukherjee, High temperature wear behavior of refractory high entropy alloys based on 4-5-6 elemental palette, J. Alloys Compd., 843(2020), art. No. 156004. doi: 10.1016/j.jallcom.2020.156004
      [49]
      A. Poulia, E. Georgatis, A. Lekatou, and A. Karantzalis, Dry-sliding wear response of MoTaWNbV high entropy alloy, Adv. Eng. Mater., 19(2017), No. 2, art. No. 1600535. doi: 10.1002/adem.201600535
      [50]
      N.B. Hua, W.J. Wang, Q.T. Wang, Y.X. Ye, S.H. Lin, L. Zhang, Q.H. Guo, J. Brechtl, and P.K. Liaw, Mechanical, corrosion, and wear properties of biomedical Ti–Zr–Nb–Ta–Mo high entropy alloys, J. Alloys Compd., 861(2021), art. No. 157997. doi: 10.1016/j.jallcom.2020.157997
      [51]
      H.L. Huang, Y. Wu, J.Y. He, H. Wang, X.J. Liu, K. An, W. Wu, and Z.P. Lu, Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering, Adv. Mater., 29(2017), No. 30, art. No. 1701678. doi: 10.1002/adma.201701678
      [52]
      C. Lee, G. Song, M.C. Gao, R. Feng, P.Y. Chen, J. Brechtl, Y. Chen, K. An, W. Guo, J.D. Poplawsky, S. Li, A.T. Samaei, W. Chen, A. Hu, H. Choo, and P.K. Liaw, Lattice distortion in a strong and ductile refractory high-entropy alloy, Acta Mater., 160(2018), p. 158. doi: 10.1016/j.actamat.2018.08.053
      [53]
      C. Lee, G. Kim, Y. Chou, B.L. Musicó, M.C. Gao, K. An, G. Song, Y.C. Chou, V. Keppens, W. Chen, and P.K. Liaw, Temperature dependence of elastic and plastic deformation behavior of a refractory high-entropy alloy, Sci. Adv., 6(2020), No. 37, art. No. eaaz4748. doi: 10.1126/sciadv.aaz4748
      [54]
      M. Sadeghilaridjani, M. Pole, S. Jha, S. Muskeri, N. Ghodki, and S. Mukherjee, Deformation and tribological behavior of ductile refractory high-entropy alloys, Wear, 478-479(2021), art. No. 203916. doi: 10.1016/j.wear.2021.203916
      [55]
      V. Bhardwaj, Q. Zhou, F. Zhang, W.C. Han, Y. Du, K. Hua, and H.F. Wang, Effect of Al addition on the microstructure, mechanical and wear properties of TiZrNbHf refractory high entropy alloys, Tribol. Int., 160(2021), art. No. 107031. doi: 10.1016/j.triboint.2021.107031
      [56]
      G.Y. Deng, A.K. Tieu, L.H. Su, P. Wang, L. Wang, X.D. Lan, S.G. Cui, and H.T. Zhu, Investigation into reciprocating dry sliding friction and wear properties of bulk CoCrFeNiMo high entropy alloys fabricated by spark plasma sintering and subsequent cold rolling processes: Role of Mo element concentration, Wear, 460-461(2020), art. No. 203440. doi: 10.1016/j.wear.2020.203440
      [57]
      J.W. Miao, H. Liang, A.J. Zhang, J.Y. He, J.H. Meng, and Y.P. Lu, Tribological behavior of an AlCoCrFeNi2.1 eutectic high entropy alloy sliding against different counterfaces, Tribol. Int., 153(2021), art. No. 106599. doi: 10.1016/j.triboint.2020.106599
      [58]
      N. Haghdadi, T. Guo, A. Ghaderi, P.D. Hodgson, M.R. Barnett, and D.M. Fabijanic, The scratch behaviour of AlxCoCrFeNi (x=0.3 and 1.0) high entropy alloys, Wear, 428-429(2019), p. 293. doi: 10.1016/j.wear.2019.03.026
      [59]
      M. Chen, L.W. Lan, X.H. Shi, H.J. Yang, M. Zhang, and J.W. Qiao, The tribological properties of Al0.6CoCrFeNi high-entropy alloy with the σ phase precipitation at elevated temperature, J. Alloys Compd., 777(2019), p. 180. doi: 10.1016/j.jallcom.2018.10.393
      [60]
      Y.S. Geng, H. Tan, L. Wang, A.K. Tieu, J. Chen, J. Cheng, and J. Yang, Nano-coupled heterostructure induced excellent mechanical and tribological properties in AlCoCrFeNi high entropy alloy, Tribol. Int., 154(2021), art. No. 106662. doi: 10.1016/j.triboint.2020.106662
      [61]
      J. Joseph, N. Haghdadi, K. Shamlaye, P. Hodgson, M. Barnett, and D. Fabijanic, The sliding wear behaviour of CoCrFeMnNi and AlxCoCrFeNi high entropy alloys at elevated temperatures, Wear, 428-429(2019), p. 32. doi: 10.1016/j.wear.2019.03.002
      [62]
      S.Z. Niu, H.C. Kou, J. Wang, and J.S. Li, Improved tensile properties of Al0.5CoCrFeNi high-entropy alloy by tailoring microstructures, Rare Met., 40(2021), No. 9, p. 1. doi: 10.1007/s12598-016-0860-y
      [63]
      H.X. Yang, J.S. Li, T. Guo, W.Y. Wang, H.C. Kou, and J. Wang, Evolution of microstructure and hardness in a dual-phase Al0.5CoCrFeNi high-entropy alloy with different grain sizes, Rare Met., 39(2020), No. 2, p. 156. doi: 10.1007/s12598-019-01320-4
      [64]
      J.X. Hou, J. Fan, H.J. Yang, Z. Wang, and J.W. Qiao, Deformation behavior and plastic instability of boronized Al0.25CoCrFeNi high-entropy alloys, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1363. doi: 10.1007/s12613-020-1967-6
      [65]
      C.B. Wei, X.H. Du, Y.P. Lu, H. Jiang, T.J. Li, and T.M. Wang, Novel as-cast AlCrFe2Ni2Ti0.5 high-entropy alloy with excellent mechanical properties, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1312. doi: 10.1007/s12613-020-2042-z
      [66]
      M. Zhang, J.X. Hou, H.J. Yang, Y.Q. Tan, X.J. Wang, X.H. Shi, R.P. Guo, and J.W. Qiao, Tensile strength prediction of dual-phase Al0.6CoCrFeNi high-entropy alloys, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1341. doi: 10.1007/s12613-020-2084-2
      [67]
      M.Y. Wu, K. Chen, Z. Xu, and D.Y. Li, Effect of Ti addition on the sliding wear behavior of AlCrFeCoNi high-entropy alloy, Wear, 462-463(2020), art. No. 203493. doi: 10.1016/j.wear.2020.203493
      [68]
      X.C. Ye, T. Wang, Z.Y. Xu, C. Liu, H.H. Wu, G.W. Zhao, and D. Fang, Effect of Ti content on microstructure and mechanical properties of CuCoFeNi high-entropy alloys, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1326. doi: 10.1007/s12613-020-2024-1
      [69]
      Z. Cheng, L. Yang, Z.K. Huang, T. Wan, M.Y. Zhu, and F.Z. Ren, Achieving low wear in a μ-phase reinforced high-entropy alloy and associated subsurface microstructure evolution, Wear, 474-475(2021), art. No. 203755. doi: 10.1016/j.wear.2021.203755
      [70]
      Y. Fu, C. Huang, C.W. Du, J. Li, C.D. Dai, H. Luo, Z.Y. Liu, and X.G. Li, Evolution in microstructure, wear, corrosion, and tribocorrosion behavior of Mo-containing high-entropy alloy coatings fabricated by laser cladding, Corros. Sci., 191(2021), art. No. 109727. doi: 10.1016/j.corsci.2021.109727
      [71]
      Y. Yu, F. He, Z.H. Qiao, Z.J. Wang, W.M. Liu, and J. Yang, Effects of temperature and microstructure on the triblogical properties of CoCrFeNiNbx eutectic high entropy alloys, J. Alloys Compd., 775(2019), p. 1376. doi: 10.1016/j.jallcom.2018.10.138
      [72]
      N. Malatji, A.P.I. Popoola, T. Lengopeng, and S. Pityana, Effect of Nb addition on the microstructural, mechanical and electrochemical characteristics of AlCrFeNiCu high-entropy alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1332. doi: 10.1007/s12613-020-2178-x
      [73]
      J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, and Z.P. Lu, Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system, Acta Mater., 62(2014), p. 105. doi: 10.1016/j.actamat.2013.09.037
      [74]
      J.M. Wu, S.J. Lin, J.W. Yeh, S.K. Chen, Y.S. Huang, and H.C. Chen, Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content, Wear, 261(2006), No. 5-6, p. 513. doi: 10.1016/j.wear.2005.12.008
      [75]
      G.J. Zhang, Q.W. Tian, K.X. Yin, S.Q. Niu, M.H. Wu, Y.N. Wang, and J.C. Huang, Microstructure, hardness and wear behavior of AlxCoCrFe2Ni (x = 0.3, 0.7, 1.0) high entropy alloy coatings prepared by laser cladding, JOM, 73(2021), No. 11, p. 3597. doi: 10.1007/s11837-021-04874-w
      [76]
      E.P. George, W.A. Curtin, and C.C. Tasan, High entropy alloys: A focused review of mechanical properties and deformation mechanisms, Acta Mater., 188(2020), p. 435. doi: 10.1016/j.actamat.2019.12.015
      [77]
      C.Y. Hsu, T.S. Sheu, J.W. Yeh, and S.K. Chen, Effect of iron content on wear behavior of AlCoCrFexMo0.5Ni high-entropy alloys, Wear, 268(2010), No. 5-6, p. 653. doi: 10.1016/j.wear.2009.10.013
      [78]
      D. Kumar, J. B, D.K. Meena, E.W. Huang, Y.J. Chang, A.C. Yeh, J. Jain, S. Neelakantan, and N.N. Gosvami, Reversal of favorable microstructure under plastic ploughing vs. interfacial shear induced wear in aged Co1.5CrFeNi1.5Ti0.5 high-entropy alloy, Wear, 468-469(2021), art. No. 203595. doi: 10.1016/j.wear.2020.203595
      [79]
      B. Gwalani, T. Torgerson, S. Dasari, A. Jagetia, M.S.K.K.Y. Nartu, S. Gangireddy, M. Pole, T. Wang, T.W. Scharf, and R. Banerjee, Influence of fine-scale B2 precipitation on dynamic compression and wear properties in hypo-eutectic Al0.5CoCrFeNi high-entropy alloy, J. Alloys Compd., 853(2021), art. No. 157126. doi: 10.1016/j.jallcom.2020.157126
      [80]
      Y.C. Cai, L.S. Zhu, Y. Cui, M.D. Shan, H.J. Li, Y. Xin, and J. Han, Fracture and wear mechanisms of FeMnCrNiCo + x(TiC) composite high-entropy alloy cladding layers, Appl. Surf. Sci., 543(2021), art. No. 148794. doi: 10.1016/j.apsusc.2020.148794
      [81]
      P.F. Jiang, C.H. Zhang, S. Zhang, J.B. Zhang, J. Chen, and Y. Liu, Fabrication and wear behavior of TiC reinforced FeCoCrAlCu-based high entropy alloy coatings by laser surface alloying, Mater. Chem. Phys., 255(2020), art. No. 123571. doi: 10.1016/j.matchemphys.2020.123571
      [82]
      T. Zhu, H. Wu, R. Zhou, N.Y. Zhang, Y. Yin, L.X. Liang, Y. Liu, J. Li, Q. Shan, Q.X. Li, and W.D. Huang, Microstructures and tribological properties of TiC reinforced FeCoNiCuAl high-entropy alloy at normal and elevated temperature, Metals, 10(2020), No. 3, art. No. 387. doi: 10.3390/met10030387
      [83]
      Z.M. Guo, A.J. Zhang, J.S. Han, and J.H. Meng, Microstructure, mechanical and tribological properties of CoCrFeNiMn high entropy alloy matrix composites with addition of Cr3C2, Tribol. Int., 151(2020), art. No. 106436. doi: 10.1016/j.triboint.2020.106436
      [84]
      R. Zhou, G. Chen, B. Liu, J.W. Wang, L.L. Han, and Y. Liu, Microstructures and wear behaviour of (FeCoCrNi)1−x(WC)x high entropy alloy composites, Int. J. Refract. Met. Hard Mater., 75(2018), p. 56. doi: 10.1016/j.ijrmhm.2018.03.019
      [85]
      X.Y. Liu, H. Yin, and Y. Xu, Microstructure, mechanical and tribological properties of oxide dispersion strengthened high-entropy alloys, Materials, 10(2017), No. 11, art. No. 1312. doi: 10.3390/ma10111312
      [86]
      E. Hornbogen, The role of fracture toughness in the wear of metals, Wear, 33(1975), No. 2, p. 251. doi: 10.1016/0043-1648(75)90280-X
      [87]
      Y.X. Wang, Y.J. Yang, H.J. Yang, M. Zhang, and J.W. Qiao, Effect of nitriding on the tribological properties of Al1.3CoCuFeNi2 high-entropy alloy, J. Alloys Compd., 725(2017), p. 365. doi: 10.1016/j.jallcom.2017.07.132
      [88]
      Y.X. Wang, Y.J. Yang, H.J. Yang, M. Zhang, S.G. Ma, and J.W. Qiao, Microstructure and wear properties of nitrided AlCoCrFeNi high-entropy alloy, Mater. Chem. Phys., 210(2018), p. 233. doi: 10.1016/j.matchemphys.2017.05.029
      [89]
      L.W. Lan, X.J. Wang, R.P. Guo, H.J. Yang, and J.W. Qiao, Effect of environments and normal loads on tribological properties of nitrided Ni45(FeCoCr)40(AlTi)15 high-entropy alloys, J. Mater. Sci. Technol., 42(2020), p. 85. doi: 10.1016/j.jmst.2019.08.051
      [90]
      J.X. Hou, M. Zhang, H.J. Yang, J.W. Qiao, and Y.C. Wu, Surface strengthening in Al0.25CoCrFeNi high-entropy alloy by boronizing, Mater. Lett., 238(2019), p. 258. doi: 10.1016/j.matlet.2018.12.029
      [91]
      Y.H. Wu, H.J. Yang, R.P. Guo, X.J. Wang, X.H. Shi, P.K. Liaw, and J.W. Qiao, Tribological behavior of boronized Al0.1CoCrFeNi high-entropy alloys under dry and lubricated conditions, Wear, 460-461(2020), art. No. 203452. doi: 10.1016/j.wear.2020.203452
      [92]
      A. Verma, P. Tarate, A.C. Abhyankar, M.R. Mohape, D.S. Gowtam, V.P. Deshmukh, and T. Shanmugasundaram, High temperature wear in CoCrFeNiCux high entropy alloys: The role of Cu, Scripta Mater., 161(2019), p. 28. doi: 10.1016/j.scriptamat.2018.10.007
      [93]
      X.Y. Liu, S.Q. Zhou, and Y. Xu, Microstructure and tribological performance of Fe50Mn30Co10Cr10 high-entropy alloy based self-lubricating composites, Mater. Lett., 233(2018), p. 142. doi: 10.1016/j.matlet.2018.08.100
      [94]
      Y.S. Geng, J. Chen, H. Tan, J. Cheng, S.Y. Zhu, and J. Yang, Tribological performances of CoCrFeNiAl high entropy alloy matrix solid-lubricating composites over a wide temperature range, Tribol. Int., 157(2021), art. No. 106912. doi: 10.1016/j.triboint.2021.106912
      [95]
      A.J. Zhang, J.S. Han, B. Su, D.L. Pen, and J.H. Meng, Microstructure, mechanical properties and tribological performance of CoCrFeNi high entropy alloy matrix self-lubricating composite, Mater. Des., 114(2017), p. 253. doi: 10.1016/j.matdes.2016.11.072
      [96]
      A.J. Zhang, J.S. Han, B. Su, and J.H. Meng, A novel CoCrFeNi high entropy alloy matrix self-lubricating composite, J. Alloys Compd., 725(2017), p. 700. doi: 10.1016/j.jallcom.2017.07.197
      [97]
      P.Y. Shi, Y. Yu, N.N. Xiong, M.Z. Liu, Z.H. Qiao, G.W. Yi, Q.Q. Yao, G.P. Zhao, E.Q. Xie, and Q.H. Wang, Microstructure and tribological behavior of a novel atmospheric plasma sprayed AlCoCrFeNi high entropy alloy matrix self-lubricating composite coatings, Tribol. Int., 151(2020), art. No. 106470. doi: 10.1016/j.triboint.2020.106470
      [98]
      A.O. Moghaddam, M.N. Samodurova, K. Pashkeev, M. Doubenskaia, A. Sova, and E.A. Trofimov, A novel intermediate temperature self-lubricating CoCrCu1−xFeNix high entropy alloy fabricated by direct laser cladding, Tribol. Int., 156(2021), art. No. 106857. doi: 10.1016/j.triboint.2021.106857
      [99]
      A.J. Zhang, J.S. Han, B. Su, and J.H. Meng, A promising new high temperature self-lubricating material: CoCrFeNiS0.5 high entropy alloy, Mater. Sci. Eng. A, 731(2018), p. 36. doi: 10.1016/j.msea.2018.06.030
      [100]
      J. Joseph, N. Haghdadi, M. Annasamy, S. Kada, P.D. Hodgson, M.R. Barnett, and D.M. Fabijanic, On the enhanced wear resistance of CoCrFeMnNi high entropy alloy at intermediate temperature, Scripta Mater., 186(2020), p. 230. doi: 10.1016/j.scriptamat.2020.05.053
      [101]
      W.H. Liu, Y. Wu, J.Y. He, Y. Zhang, C.T. Liu, and Z.P. Lu, The phase competition and stability of high-entropy alloys, JOM, 66(2014), No. 10, p. 1973. doi: 10.1007/s11837-014-1119-4
      [102]
      F. Otto, A. Dlouhý, K.G. Pradeep, M. Kuběnová, D. Raabe, G. Eggeler, and E.P. George, Decomposition of the single-phase high-entropy alloy CrMnFeCoNi after prolonged anneals at intermediate temperatures, Acta Mater., 112(2016), p. 40. doi: 10.1016/j.actamat.2016.04.005
      [103]
      E.J. Pickering, R. Muñoz-Moreno, H.J. Stone, and N.G. Jones, Precipitation in the equiatomic high-entropy alloy CrMnFeCoNi, Scripta Mater., 113(2016), p. 106. doi: 10.1016/j.scriptamat.2015.10.025
      [104]
      G. Jin, Z.B. Cai, Y.J. Guan, X.F. Cui, Z. Liu, Y. Li, M.L. Dong, and D. zhang, High temperature wear performance of laser-cladded FeNiCoAlCu high-entropy alloy coating, Appl. Surf. Sci., 445(2018), p. 113. doi: 10.1016/j.apsusc.2018.03.135
      [105]
      Y. Wei, Y. Fu, Z.M. Pan, Y.C. Ma, H.X. Cheng, Q.C. Zhao, H. Luo, and X.G. Li, Influencing factors and mechanism of high-temperature oxidation of high-entropy alloys: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 915. doi: 10.1007/s12613-021-2257-7
      [106]
      L.M. Du, L.W. Lan, S. Zhu, H.J. Yang, X.H. Shi, P.K. Liaw, and J.W. Qiao, Effects of temperature on the tribological behavior of Al0.25CoCrFeNi high-entropy alloy, J. Mater. Sci. Technol., 35(2019), No. 5, p. 917. doi: 10.1016/j.jmst.2018.11.023
      [107]
      B.B. Xin, A.J. Zhang, J.S. Han, and J.H. Meng, The tribological properties of carbon doped Al0.2Co1.5CrFeNi1.5Ti0.5 high entropy alloys, Wear, 484-485(2021), art. No. 204045. doi: 10.1016/j.wear.2021.204045
      [108]
      T.J. Rupert and C.A. Schuh, Sliding wear of nanocrystalline Ni–W: Structural evolution and the apparent breakdown of Archard scaling, Acta Mater., 58(2010), No. 12, p. 4137. doi: 10.1016/j.actamat.2010.04.005

    Catalog


    • /

      返回文章
      返回