留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 12
Dec.  2022

图(7)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  667
  • HTML全文浏览量:  300
  • PDF下载量:  50
  • 被引次数: 0
Jinfa Liaoand Baojun Zhao, Phase equilibrium studies of titanomagnetite and ilmenite smelting slags, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp. 2162-2171. https://doi.org/10.1007/s12613-021-2376-1
Cite this article as:
Jinfa Liaoand Baojun Zhao, Phase equilibrium studies of titanomagnetite and ilmenite smelting slags, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp. 2162-2171. https://doi.org/10.1007/s12613-021-2376-1
引用本文 PDF XML SpringerLink
研究论文

钛磁铁矿和钛铁矿冶炼渣的相平衡研究

  • 通讯作者:

    赵宝军    E-mail: bzhao@jxust.edu.cn

文章亮点

  • (1) 针对高炉处理含钛铁矿易产生高熔点TI(CN),显著增加渣和铁水粘度,且渣中TiO2难以回收的难题,提出了利用HIsmelt技术处理钛磁铁矿及与钛铁矿的混合原料,同时生产铁和高钛渣的工艺。
  • (2) 通过系统详实的实验提供了HIsmelt工艺冶炼钒钛磁铁矿与钛铁矿的混合原料的具体渣型和温度范围,在顺利产出满足炼钢需求的铁水和生产钛白的高钛渣的同时在水冷内壁形成保护渣层,延长炉体寿命。
  • (3) 冶炼钛磁铁矿和钛铁矿的混合矿可以获得高TiO2和CaO/SiO2的渣,易于制备钛白且脱硫效果好(4)实验数据与FactSage热力学模型计算结果进行比较,指出了目前含钛热力学数据库的局限性及原因,提出了热力学模型数据库优化的方向。
  • 高炉冶炼含钛铁矿时,因强还原条件和高温会形成高熔点Ti(C,N),导致炉渣和铁水粘度增加,使高炉操作难以顺利进行。必须掺杂高品位铁矿稀释原料中的氧化钛,使高炉渣所含的20wt%~30 wt% TiO2难以回收,造成资源浪费。HIsmelt是近年来开发的绿色炼铁新工艺,不需要焦炭和烧结矿。HIsmelt工艺中炉内的氧分压高于高炉中的分压,温度显著低于高炉风口,因此避免了Ti(C,N)的形成。HIsmelt炉的水冷内壁会造成大量热损失,增加能耗,而且有炉衬烧穿的潜在风险。在HIsmelt工艺中以CaO为助剂熔炼富含TiO2的铁矿会产生Al2O3–MgO–SiO2–CaO–TiO2渣。利用高温平衡、冷淬和电子探针显微分析技术研究了该渣系的相平衡,探讨了处理钛磁铁矿以及钛磁铁矿和钛铁矿混合矿的过程中渣液相温度与助剂添加量的关系。在所研究的组成范围内观察到的初晶相有板钛矿M3O5(MgO·2TiO2–Al2O3·TiO2)、尖晶石(MgO·Al2O3)、钙钛矿CaTiO3和金红石TiO2。结果表明,在TiO2和M3O5相区中,渣液相温度随着CaO含量的增加而降低,而在尖晶石和CaTiO3初晶相区的液相温度则随CaO含量的增加而升高。通过控制渣液相温度可以在炉子内壁上形成保护渣层,减少热损失,降低内衬耐火材料消耗。此外,讨论了炉渣碱度对炉渣液相线温度的影响,发现冶炼钛磁铁矿和钛铁矿的混合矿可以获得低硫铁水和高TiO2炉渣,具有显著的成本和资源优势。最后,将实验测定的液相温度和固溶体成分与FactSage计算结果进行了比较,指出目前含钛热力学数据库的局限性和改进方向。
  • Research Article

    Phase equilibrium studies of titanomagnetite and ilmenite smelting slags

    + Author Affiliations
    • The phase equilibrium information of slag plays an important role in pyrometallurgical processes to obtain optimum fluxing conditions and operating temperatures. The smelting reduction of titanomagnetite and ilmenite ores in an iron blast furnace (BF) can form Ti(C,N) particles, causing the increased viscosities of slag and hot metal. HIsmelt has been developed in recent years for ironmaking and does not need coke and sinter. The formation of Ti(C,N) in the HIsmelt process is avoided because the oxygen partial pressure in the process is higher than that in the BF. The smelting of TiO2-containing ores in the HIsmelt process results in Al2O3–MgO–SiO2–CaO–TiO2 slag. Phase equilibrium in this slag system has been investigated using equilibration, quenching, and electron probe microanalysis techniques. The experimental results were presented in two pseudo-binary sections, which represent the process of HIsmelt for the treatment of 100% titanomagnetite ore and mixed titanomagnetite+ilmenite ore (mass ratio of 2:1), respectively. The primary phases observed in the composition range investigated include pseudo-brookite M3O5 (MgO·2TiO2–Al2O3·TiO2), spinel (MgO·Al2O3), perovskite CaTiO3, and rutile TiO2. The results show that the liquidus temperatures decrease in the TiO2 and M3O5 primary phase fields and increase in the spinel and CaTiO3 primary phase fields with the increase in CaO concentration. The calculation of solid-phase fractions from the experimental data has been demonstrated. The effect of basicity on the liquidus temperatures of the slag has been discussed. The smelting of titanomagnetite plus ilmenite ores has significant advantages to obtain low-sulfur hot metal and high-TiO2 slag. Experimentally determined liquidus temperatures were compared with the FactSage predictions to evaluate the existing thermodynamic databases.
    • loading
    • [1]
      H.T. Wang, W. Zhao, M.S. Chu, C. Feng, Z.G. Liu, and J. Tang, Current status and development trends of innovative blast furnace ironmaking technologies aimed to environmental harmony and operation intellectualization, J. Iron Steel Res. Int., 24(2017), No. 8, p. 751. doi: 10.1016/S1006-706X(17)30115-2
      [2]
      E. Mousa, Modern blast furnace ironmaking technology: Potentials to meet the demand of high hot metal production and lower energy consumption, Metall. Mater. Eng., 25(2019), No. 2, p. 69. doi: 10.30544/414
      [3]
      R.S. Diao, New understanding about special problems of smelting vanadium bearing titanomagnetite with BF, Iron Steel, 34(1999), No. 6, p. 12.
      [4]
      Z.D. Pang, Y.Y. Jiang, J.W. Ling, X.W. Lü, and Z.M. Yan, Blast furnace ironmaking process with super high TiO2 in the slag: Density and surface tension of the slag, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1170. doi: 10.1007/s12613-021-2262-x
      [5]
      J. Sun, S. Wang, M.S. Chu, et al., Titanium distribution between blast furnace slag and iron for blast furnace linings protection, Ironmaking Steelmaking, 47(2020), No. 5, p. 545. doi: 10.1080/03019233.2018.1557847
      [6]
      K.X. Jiao, J.L. Zhang, Z.J. Liu, S.B. Kuang, and Y.X. Liu, Dissection investigation of Ti(C,N) behavior in blast furnace hearth during vanadium titano-magnetite smelting, ISIJ Int., 57(2017), No. 1, p. 48. doi: 10.2355/isijinternational.ISIJINT-2016-419
      [7]
      G.H. Zhang, Y.L. Zhen, and K.C. Chou, Influence of TiC on the viscosity of CaO–MgO–Al2O3–SiO2–TiC suspension system, ISIJ Int., 55(2015), No. 5, p. 922. doi: 10.2355/isijinternational.55.922
      [8]
      S. Wang, M. Chen, Y.F. Guo, T. Jiang, and B.J. Zhao, Reduction and smelting of vanadium titanomagnetite metallized pellets, JOM, 71(2019), No. 3, p. 1144. doi: 10.1007/s11837-018-2863-7
      [9]
      S. Wang, M. Chen, Y.F. Guo, T. Jiang, and B.J. Zhao, Comparison of phase equilibria between FactSage predictions and experimental results in titanium oxide-containing system, Calphad, 63(2018), p. 77. doi: 10.1016/j.calphad.2018.09.001
      [10]
      D. Xie, Y. Mao, and Y. Zhu, Viscosity and flow behaviour of TiO2-containing blast furnace slags under reducing conditions, [in] 7th International Conference on Molten Slags, Fluxes and Salts, Cape Town, 2004, p. 43.
      [11]
      K.X. Jiao, J.L. Zhang, Z.Y. Wang, C.L. Chen, and Y.X. Liu, Effect of TiO2 and FeO on the viscosity and structure of blast furnace primary slags, Steel Res. Int., 88(2017), No. 5, art. No. 1600296. doi: 10.1002/srin.201600296
      [12]
      K.X. Jiao, J.L. Zhang, Z.J. Liu, C.L. Chen, and Y.X. Liu, Analysis of blast furnace hearth sidewall erosion and protective layer formation, ISIJ Int., 56(2016), No. 11, p. 1956. doi: 10.2355/isijinternational.ISIJINT-2016-168
      [13]
      C. Liu, Y.Z. Zhang, K. Zhao, H.W. Xing, and Y. Kang, Modified biomass fuel instead of coke for iron ore sintering, Ironmaking Steelmaking, 47(2020), No. 2, p. 188. doi: 10.1080/03019233.2018.1507070
      [14]
      X. Zhang, Q. Zhong, C. Liu, et al., Partial substitution of anthracite for coke breeze in iron ore sintering, Sci. Rep., 11(2021), art. No. 1540. doi: 10.1038/s41598-021-80992-4
      [15]
      J.L. Zhang, G.Q. Zhang, Z.J. Liu, Z.H. Wang, K.J. Li, and X.B. Zhang, Production overview and main characteristics of HIsmelt process in Shandong Molong, China Metall., 28(2018), No. 5, p. 37.
      [16]
      H.B. Ma, K.X. Jiao, J.L. Zhang, Y.B. Zong, J. Zhang, and S. Meng, Viscosity of CaO–MgO–Al2O3–SiO2–TiO2–FeO slag with varying TiO2 content: The effect of crystallization on viscosity abrupt behavior, Ceram. Int., 47(2021), No. 12, p. 17445. doi: 10.1016/j.ceramint.2021.03.061
      [17]
      X.Y. Zhang, K.X. Jiao, J.L. Zhang, and Z.Y. Guo, A review on low carbon emissions projects of steel industry in the world, J. Clean. Prod., 306(2021), art. No. 127259. doi: 10.1016/j.jclepro.2021.127259
      [18]
      C.Z. Cao, Y.J. Meng, F.X. Yan, D.W. Zhang, X. Li, and F.M. Zhang, Analysis on energy efficiency and optimization of HIsmelt process, [in] T. Wang, X.B Chen, D.P. Guillen, et al. eds., Energy Technology 2019. The Minerals, Metals & Materials Series., Springer, Cham, 2019, p. 3.
      [19]
      Y.L. Li, H.B. Li, H. Wang, et al., Smelting potential of HIsmelt technology for high-phosphorus iron ore and ilmenite, [in] 2011 International Conference on Computer Distributed Control and Intelligent Environmental Monitoring, Changsha, 2011, p. 1283.
      [20]
      E. Heikinheimo, D. Ryzhonkov, and S. Paderin, Iron oxide activity in complex silicate slags, Solid State Ionics, 3-4(1981), p. 541. doi: 10.1016/0167-2738(81)90147-8
      [21]
      C.B. Shi, D.L. Zheng, S.H. Shin, J. Li, and J.W. Cho, Effect of TiO2 on the viscosity and structure of low-fluoride slag used for electroslag remelting of Ti-containing steels, Int. J. Miner. Metall. Mater., 24(2017), No. 1, p. 18. doi: 10.1007/s12613-017-1374-9
      [22]
      L. Zhang, L.N. Zhang, M.Y. Wang, G.Q. Li, and Z.T. Sui, Recovery of titanium compounds from molten Ti-bearing blast furnace slag under the dynamic oxidation condition, Miner. Eng., 20(2007), No. 7, p. 684. doi: 10.1016/j.mineng.2007.01.003
      [23]
      J. Ma, G.Q. Fu, W. Li, and M.Y. Zhu, Influence of TiO2 on the melting property and viscosity of Cr-containing high-Ti melting slag, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 310. doi: 10.1007/s12613-019-1914-6
      [24]
      Z. Wang, H.Y. Sun, and Q.S. Zhu, Effects of the continuous cooling process conditions on the crystallization and liberation characteristics of anosovite in Ti-bearing titanomagnetite smelting slag, Int. J. Miner. Metall. Mater., 26(2019), No. 9, p. 1120. doi: 10.1007/s12613-019-1830-9
      [25]
      J.F. Liao and B.J. Zhao, Phase equilibria study in the system “Fe2O3”–ZnO–Al2O3–(PbO+CaO+SiO2) in air, Calphad, 74(2021), art. No. 102282. doi: 10.1016/j.calphad.2021.102282
      [26]
      J.F. Liao and B.J. Zhao, Experimental studies in phase equilibrium of the system “FeO”–SiO2–MgO–Al2O3–“Cr2O3” at iron saturation, Metall. Mater. Trans. B, 52(2021), No. 4, p. 2364. doi: 10.1007/s11663-021-02195-6
      [27]
      X. Wang, X.D. Ma, K. Su, C.F. Liao, and B.J. Zhao, Fundamental studies for high temperature processing of tungsten leaching residues for alloy formation, Tungsten, 2(2020), No. 4, p. 362. doi: 10.1007/s42864-020-00064-4
      [28]
      S. Wang, Y.F. Guo, F.Q. Zheng, et al., Optimization of basicity of high Ti slag for efficient smelting of vanadium titanomagnetite metallized pellets, Metall. Mater. Trans. B, 51(2020), No. 3, p. 945. doi: 10.1007/s11663-020-01822-y
      [29]
      W.T. Holmes, L.H. Banning, and L.L. Brown, Liquidus Temperatures of Titaniferous Slag (in Three Parts). 1, TiO2–Al2O3–SiO2–CaO–MgO, [in] Report of Investigations, US Department of the Interior, Bureau of Mines, 1968, p. 7081.
      [30]
      L.B. McRae, E. Pothas, P.R. Jochens, and D.D. Howat, Physico-chemical properties of titaniferous slags, J. South. Afr. Inst. Min. Metall., 69(1969), No. 11, p. 557.
      [31]
      I.P. Ratchev and G.R. Belton, A study of the liquidus temperatures of titano-magnetite smelting type slag, [in] Proceedings of the 5th International Conference on Molten Slag, Fluxes and Salts, Sydney, 1997, p. 387.
      [32]
      J.J. Shi, L.F. Sun, B. Zhang, et al, Experimental determination of the phase diagram of the CaO–SiO2–5 pctMgO–10 pctAl2O3–TiO2 system, Metall. Mater. Trans. B, 47(2016), No. 1, p. 425. doi: 10.1007/s11663-015-0527-3
      [33]
      L.F. Sun and J.J. Shi, Effect of Al2O3 addition on the phase equilibria relations of CaO–SiO2–5 wt%MgO–Al2O3–TiO2 system relevant to Ti-bearing blast furnace slag, ISIJ Int., 59(2019), No. 7, p. 1184. doi: 10.2355/isijinternational.ISIJINT-2019-014
      [34]
      J.J. Shi, M. Chen, I. Santoso, et al., 1250°C liquidus for the CaO–MgO–SiO2–Al2O3–TiO2 system in air, Ceram. Int., 46(2020), No. 2, p. 1545. doi: 10.1016/j.ceramint.2019.09.122
      [35]
      C.W. Bale, E. Bélisle, P. Chartrand, et al., FactSage thermochemical software and databases, 2010–2016, Calphad, 54(2016), p. 35. doi: 10.1016/j.calphad.2016.05.002
      [36]
      Z. Wang, Q.S. Zhu, and H.Y. Sun, Phase equilibria in the TiO2-rich part of the TiO2–CaO–SiO2–10 wt pct Al2O3–5 wt pct MgO system at 1773 K, Metall. Mater. Trans. B, 50(2019), No. 1, p. 357. doi: 10.1007/s11663-018-1441-2
      [37]
      G. Handfield and G.G. Charette, Viscosity and structure of industrial high TiO2 slags, Can. Metall. Q., 10(1971), No. 3, p. 235. doi: 10.1179/cmq.1971.10.3.235
      [38]
      X.H. Li, J. Kou, T.C. Sun, S.C. Wu, and Y.Q. Zhao, Effects of calcium compounds on the carbothermic reduction of vanadium titanomagnetite concentrate, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 301. doi: 10.1007/s12613-019-1864-z
      [39]
      X.H. Li, J. Kou, T.C. Sun, S.C. Wu, and Y.Q. Zhao, Formation of calcium titanate in the carbothermic reduction of vanadium titanomagnetite concentrate by adding CaCO3, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 745. doi: 10.1007/s12613-019-1903-9

    Catalog


    • /

      返回文章
      返回