留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 7
Jul.  2022

图(13)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  3070
  • HTML全文浏览量:  1110
  • PDF下载量:  67
  • 被引次数: 0
Siyuan Jin, Xiaochun Ma, Ruizhi Wu, Tingqu Li, Jiaxiu Wang, Boris L Krit, Legan Hou, Jinghuai Zhang,  and Guixiang Wang, Effect of carbonate additive on the microstructure and corrosion resistance of plasma electrolytic oxidation coating on Mg–9Li–3Al alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1453-1463. https://doi.org/10.1007/s12613-021-2377-0
Cite this article as:
Siyuan Jin, Xiaochun Ma, Ruizhi Wu, Tingqu Li, Jiaxiu Wang, Boris L Krit, Legan Hou, Jinghuai Zhang,  and Guixiang Wang, Effect of carbonate additive on the microstructure and corrosion resistance of plasma electrolytic oxidation coating on Mg–9Li–3Al alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1453-1463. https://doi.org/10.1007/s12613-021-2377-0
引用本文 PDF XML SpringerLink
研究论文

碳酸盐添加剂对Mg–9Li–3Al合金等离子电解氧化涂层显微组织和耐蚀性的影响

  • 通讯作者:

    巫瑞智    E-mail: rzwu@hrbeu.edu.cn

    李廷取    E-mail: ltq2000@163.com

文章亮点

  • (1) 在电解液中添加 Na2CO3 有效地改变了Mg–Li合金表面的PEO涂层的微观结构。
  • (2) 碳酸盐的加入使涂层在涂层中生成更稳定、更耐腐蚀的Li2CO3
  • (3) 碳酸盐的加入可有效提高涂层的耐腐蚀性能,可延长涂层的长期保护能力。
  • 等离子电解氧化技术因其工艺简单、电解液环保、硬度高、涂层结合力等优异性能而受到广泛关注。但由于强放电和气体的逸出造成涂层多孔,在长时间的腐蚀过程中很容易丧失对基体的保护能力。因此将碳酸盐添加到硅酸盐体系电解质中以提高 Mg–9Li–3Al (wt%, LA93) 合金上等离子电解氧化涂层的耐腐蚀性。采用扫描电子显微镜、能谱仪、X射线衍射和X射线光电子能谱研究了碳酸盐对涂层形貌、结构和相组成的影响。涂层的耐腐蚀性通过电化学实验、析氢和浸渍试验来评价。结果表明,碳酸盐的加入导致涂层更致密,硬度增加,并形成了耐腐蚀的Li2CO3相。电化学实验表明,与不含碳酸盐的涂层相比,碳酸盐涂层的腐蚀电位正移(24 mV),腐蚀电流密度降低了约一个数量级。添加碳酸盐的涂层具有较高的耐腐蚀性和长期保护能力。

  • Research Article

    Effect of carbonate additive on the microstructure and corrosion resistance of plasma electrolytic oxidation coating on Mg–9Li–3Al alloy

    + Author Affiliations
    • Carbonate was added to the silicate system electrolyte to improve the corrosion resistance of the plasma electrolytic oxidation coating on Mg–9Li–3Al (wt%, LA93) alloy. The influences of carbonate on the morphology, structure, and phase composition of the coating were investigated by scanning electron microscopy, energy dispersive spectrometry, X-ray diffraction, and X-ray photoelectron spectroscopy. The corrosion resistance of the coating was evaluated by electrochemical experiment, hydrogen evolution, and immersion test. The results showed that the addition of carbonate resulted in a denser coating with increased hardness, and the corrosion-resistant Li2CO3 phase was formed. Electrochemical experiments showed that compared with the coating without carbonate, the corrosion potential of the carbonate coating positively shifted (24 mV), and the corrosion current density was reduced by approximately an order of magnitude. The coating with carbonate addition possessed a high corrosion resistance and long-term protection capability.

    • loading
    • [1]
      J.H. Wang, L. Xu, R.Z. Wu, D. An, Z. Wei, J.X. Wang, J. Feng, J.H. Zhang, L.G. Hou, and M.D. Liu, Simultaneous achievement of high electromagnetic shielding effectiveness (X-band) and strength in Mg–Li–Zn–Gd/MWCNTs composite, J. Alloys Compd., 882(2021), art. No. 160524. doi: 10.1016/j.jallcom.2021.160524
      [2]
      A. Mehrabi, R. Mahmudi, and H. Miura, Superplasticity in a multi-directionally forged Mg–Li–Zn alloy, Mater. Sci. Eng. A, 765(2019), art. No. 138274. doi: 10.1016/j.msea.2019.138274
      [3]
      S.Y. Jin, H.Y. Liu, R.Z. Wu, F. Zhong, L.G. Hou, and J.H. Zhang, Combination effects of Yb addition and cryogenic-rolling on microstructure and mechanical properties of LA141 alloy, Mater. Sci. Eng. A, 788(2020), art. No. 139611. doi: 10.1016/j.msea.2020.139611
      [4]
      J.H. Wang, L. Xu, R.Z. Wu, J. Feng, J.H. Zhang, L.G. Hou, and M.L. Zhang, Enhanced electromagnetic interference shielding in a duplex-phase Mg–9Li–3Al–1Zn alloy processed by accumulative roll bonding, Acta Metall. Sinica Engl. Lett., 33(2020), No. 4, p. 490. doi: 10.1007/s40195-020-01017-z
      [5]
      Y.Q. He, C.Q. Peng, Y. Feng, R.C. Wang, and J.F. Zhong, Effects of alloying elements on the microstructure and corrosion behavior of Mg–Li–Al–Y alloys, J. Alloys Compd., 834(2020), art. No. 154344. doi: 10.1016/j.jallcom.2020.154344
      [6]
      D. Orlov, K.D. Ralston, N. Birbilis, and Y. Estrin, Enhanced corrosion resistance of Mg alloy ZK60 after processing by integrated extrusion and equal channel angular pressing, Acta Mater., 59(2011), No. 15, p. 6176. doi: 10.1016/j.actamat.2011.06.033
      [7]
      L.Y. Wang, X.M. Xiao, E.Y. Liu, S.R. Yu, X.L. Yin, J. Wang, G. Zhu, Q. Li, and J. Li, Fabrication of superhydrophobic needle-like Ca–P coating with anti-fouling and anti-corrosion properties on AZ31 magnesium alloy, Colloids Surf. A, 620(2021), art. No. 126568. doi: 10.1016/j.colsurfa.2021.126568
      [8]
      B.T. da Fonseca, E. D’Elia, J.M. Siqueira Júnior, S.M. Oliveira, K.L. Castro, and E.S. Ribeiro, Study of the characteristics and properties of the SiO2/TiO2/Nb2O5 material obtained by the sol–gel process, Sci. Rep., 11(2021), No. 1, art. No. 1106. doi: 10.1038/s41598-020-80310-4
      [9]
      C.A. Huang, C.K. Lin, and Y.H. Yeh, The corrosion and wear resistances of magnesium alloy (LZ91) electroplated with copper and followed by 1 μm-thick chromium deposits, Thin Solid Films, 519(2011), No. 15, p. 4774. doi: 10.1016/j.tsf.2011.01.032
      [10]
      J.M. Zhang, K. Wang, X. Duan, Y. Zhang, H. Cai, and Z.H. Wang, Effect of hydrothermal treatment time on microstructure and corrosion behavior of micro-arc oxidation/layered double hydroxide composite coatings on LA103Z Mg–Li alloy in 3.5 wt.% NaCl solution, J. Mater. Eng. Perform., 29(2020), No. 6, p. 4032. doi: 10.1007/s11665-020-04906-7
      [11]
      B.Y. Qian, W. Miao, M. Qiu, F. Gao, D.H. Hu, J.F. Sun, R.Z. Wu, B. Krit, and S. Betsofen, Influence of voltage on the corrosion and wear resistance of micro-arc oxidation coating on Mg–8Li–2Ca alloy, Acta Metall. Sinica Engl. Lett., 32(2019), No. 2, p. 194. doi: 10.1007/s40195-018-0845-y
      [12]
      A. Apelfeld, B. Krit, V. Ludin, N. Morozova, B. Vladimirov, and R.Z. Wu, The characterization of plasma electrolytic oxidation coatings on AZ41 magnesium alloy, Surf. Coat. Technol., 322(2017), p. 127. doi: 10.1016/j.surfcoat.2017.05.048
      [13]
      L.Y. An, Y. Ma, Y.P. Liu, L. Sun, S. Wang, and Z.Y. Wang, Effects of additives, voltage and their interactions on PEO coatings formed on magnesium alloys, Surf. Coat. Technol., 354(2018), p. 226. doi: 10.1016/j.surfcoat.2018.09.026
      [14]
      Z.J. Li, Q.H. Ren, X.X. Wang, Q. Kuang, D.B. Ji, R.X. Yuan, and X.Y. Jing, Effect of phosphate additive on the morphology and anti-corrosion performance of plasma electrolytic oxidation coatings on magnesium–lithium alloy, Corros. Sci., 157(2019), p. 295. doi: 10.1016/j.corsci.2019.06.005
      [15]
      M. Mohedano, P. Pérez, E. Matykina, B. Pillado, G. Garcés, and R. Arrabal, PEO coating with Ce-sealing for corrosion protection of LPSO Mg–Y–Zn alloy, Surf. Coat. Technol., 383(2020), art. No. 125253. doi: 10.1016/j.surfcoat.2019.125253
      [16]
      Z.J. Li, Y. Yuan, P.P. Sun, and X.Y. Jing, Ceramic coatings of LA141 alloy formed by plasma electrolytic oxidation for corrosion protection, ACS Appl. Mater. Interfaces, 3(2011), No. 9, p. 3682. doi: 10.1021/am200863s
      [17]
      X.B. Wang, X.B. Tian, C.Z. Gong, and S.Q. Yang, Effect of Na2CO3 on energy consumption of micro-arc oxidation of magnesium alloy, Rare Met. Mater. Eng., 41(2012), No. S1, p. 187.
      [18]
      C.Q. Li, Z.P. Tong, Y.B. He, H.P. Huang, Y. Dong, and P. Zhang, Comparison on corrosion resistance and surface film of pure Mg and Mg–14Li alloy, Trans. Nonferrous Met. Soc. China, 30(2020), No. 9, p. 2413. doi: 10.1016/S1003-6326(20)65388-2
      [19]
      S. Tang, T.Z. Xin, W.Q. Xu, D. Miskovic, C.Q. Li, N. Birbilis, and M. Ferry, The composition-dependent oxidation film formation in Mg–Li–Al alloys, Corros. Sci., 187(2021), art. No. 109508. doi: 10.1016/j.corsci.2021.109508
      [20]
      W.Q. Xu, N. Birbilis, G. Sha, Y. Wang, J.E. Daniels, Y. Xiao, and M. Ferry, A high-specific-strength and corrosion-resistant magnesium alloy, Nat. Mater., 14(2015), No. 12, p. 1229. doi: 10.1038/nmat4435
      [21]
      Y. Yan, Y. Qiu, O. Gharbi, N. Birbilis, and P.N.H. Nakashima, Characterisation of Li in the surface film of a corrosion resistant Mg–Li(–Al–Y–Zr) alloy, Appl. Surf. Sci., 494(2019), p. 1066. doi: 10.1016/j.apsusc.2019.07.167
      [22]
      C.Q. Li, Y.B. He, and H.P. Huang, Effect of lithium content on the mechanical and corrosion behaviors of HCP binary Mg–Li alloys, J. Magnes. Alloys, 9(2021), No. 2, p. 569. doi: 10.1016/j.jma.2020.02.022
      [23]
      J.J. Yang, X.P. Lu, C. Blawert, S.C. Di, and M.L. Zheludkevich, Microstructure and corrosion behavior of Ca/P coatings prepared on magnesium by plasma electrolytic oxidation, Surf. Coat. Technol., 319(2017), p. 359. doi: 10.1016/j.surfcoat.2017.04.001
      [24]
      H.P. Duan, K.Q. Du, C.W. Yan, and F.H. Wang, Electrochemical corrosion behavior of composite coatings of sealed MAO film on magnesium alloy AZ91D, Electrochim. Acta, 51(2006), No. 14, p. 2898. doi: 10.1016/j.electacta.2005.08.026
      [25]
      B. Yin, Z.J. Peng, J. Liang, K.J. Jin, S.Y. Zhu, J. Yang, and Z.H. Qiao, Tribological behavior and mechanism of self-lubricating wear-resistant composite coatings fabricated by one-step plasma electrolytic oxidation, Tribol. Int., 97(2016), p. 97. doi: 10.1016/j.triboint.2016.01.020
      [26]
      J. da Silva Rodrigues, L. Marasca Antonini, A.A. da Cunha Bastos, J. Zhou, and C. de Fraga Malfatti, Corrosion resistance and tribological behavior of ZK30 magnesium alloy coated by plasma electrolytic oxidation, Surf. Coat. Technol., 410(2021), art. No. 126983. doi: 10.1016/j.surfcoat.2021.126983
      [27]
      E. Wierzbicka, B. Vaghefinazari, S.V. Lamaka, M.L. Zheludkevich, M. Mohedano, L. Moreno, P. Visser, A. Rodriguez, J. Velasco, R. Arrabal, and E. Matykina, Flash-PEO as an alternative to chromate conversion coatings for corrosion protection of Mg alloy, Corros. Sci., 180(2021), art. No. 109189. doi: 10.1016/j.corsci.2020.109189
      [28]
      Q.X. Xia, D.J. Zhang, D.Q. Li, Z.H. Jiang, and Z.P. Yao, Preparation of the plasma electrolytic oxidation coating on Mg–Li alloy and its thermal control performance, Surf. Coat. Technol., 369(2019), p. 252. doi: 10.1016/j.surfcoat.2019.04.073
      [29]
      L. Liu, S.R. Yu, E.Y. Liu, Y. Zhao, B.Y. Wang, Y.F. Niu, K. Zhang, G. Zhu, and Q. Li, Preparation and characterization of micro-arc oxidation coating on hollow glass microspheres/Mg alloy degradable composite, Mater. Chem. Phys., 271(2021), art. No. 124935. doi: 10.1016/j.matchemphys.2021.124935
      [30]
      X.B. Wang, X.B. Tian, C.Z. Gong, and S.Q. Yang, Na2CO3-induced gas evolution reaction and morphology modulation on magnesium alloy during micro-arc oxidation, J. Inorg. Mater., 26(2011), No. 7, p. 721. doi: 10.3724/SP.J.1077.2011.00721
      [31]
      C.Y. Chang, S.Y. Yang, and J.C.C. Chan, Solubility product of amorphous magnesium carbonate, J. Chin. Chem. Soc., 68(2021), No. 3, p. 476. doi: 10.1002/jccs.202000527
      [32]
      L. Wang, T. Shinohara, and B.P. Zhang, XPS study of the surface chemistry on AZ31 and AZ91 magnesium alloys in dilute NaCl solution, Appl. Surf. Sci., 256(2010), No. 20, p. 5807. doi: 10.1016/j.apsusc.2010.02.058
      [33]
      K. Qian, W.Z. Li, X.P. Lu, X.X. Han, Y. Jin, T. Zhang, and F.H. Wang, Effect of phosphate-based sealing treatment on the corrosion performance of a PEO coated AZ91D Mg alloy, J. Magnes. Alloys, 8(2020), No. 4, p. 1328. doi: 10.1016/j.jma.2020.05.014
      [34]
      A. Pardo, S. Merino, M.C. Merino, I. Barroso, M. Mohedano, R. Arrabal, and F. Viejo, Corrosion behaviour of silicon–carbide-particle reinforced AZ92 magnesium alloy, Corros. Sci., 51(2009), No. 4, p. 841. doi: 10.1016/j.corsci.2009.01.024
      [35]
      H.B. Yao, Y. Li, and A.T.S. Wee, Passivity behavior of melt-spun Mg–Y Alloys, Electrochim. Acta, 48(2003), No. 28, p. 4197. doi: 10.1016/S0013-4686(03)00605-4
      [36]
      S.J. Lee and L.H.T. Do, Effects of copper additive on micro-arc oxidation coating of LZ91 magnesium-lithium alloy, Surf. Coat. Technol., 307(2016), p. 781. doi: 10.1016/j.surfcoat.2016.10.008
      [37]
      X.M. Zhang, G.S. Wu, X. Peng, L.M. Li, H.Q. Feng, B. Gao, K.F. Huo, and P.K. Chu, Mitigation of corrosion on magnesium alloy by predesigned surface corrosion, Sci. Rep., 5(2015), art. No. 17399. doi: 10.1038/srep17399
      [38]
      A.L. Yerokhin, L.O. Snizhko, N.L. Gurevina, A. Leyland, A. Pilkington, and A. Matthews, Spatial characteristics of discharge phenomena in plasma electrolytic oxidation of aluminium alloy, Surf. Coat. Technol., 177-178(2004), p. 779. doi: 10.1016/j.surfcoat.2003.06.020
      [39]
      E. Mortezanejad, M. Atapour, H. Salimijazi, A. Alhaji, and A. Hakimizad, Wear and corrosion behavior of aluminate- and phosphate-based plasma electrolytic oxidation coatings with polytetrafluoroethylene nanoparticles on AZ80 Mg alloy, J. Mater. Eng. Perform., 30(2021), No. 6, p. 4030. doi: 10.1007/s11665-021-05803-3
      [40]
      L. Prince, M.A. Rousseau, X. Noirfalise, L. Dangreau, L.B. Coelho, and M.G. Olivier, Inhibitive effect of sodium carbonate on corrosion of AZ31 magnesium alloy in NaCl solution, Corros. Sci., 179(2021), art. No. 109131. doi: 10.1016/j.corsci.2020.109131
      [41]
      L.F. Hou, M. Raveggi, X.B. Chen, W.Q. Xu, K.J. Laws, Y.H. Wei, M. Ferry, and N. Birbilis, Investigating the passivity and dissolution of a corrosion resistant Mg–33at.%Li alloy in aqueous chloride using online ICP-MS, J. Electrochem. Soc., 163(2016), No. 6, p. C324. doi: 10.1149/2.0871606jes

    Catalog


    • /

      返回文章
      返回