Cite this article as: |
Wakul Bumrungsan, Kritsada Hongsith, Vasan Yarangsi, Pisith Kumnorkeaw, Sukrit Sucharitakul, Surachet Phaduangdhitidhada, and Supab Choopun, Efficiency enhancement of Cs0.1(CH3NH3)0.9PbI3 perovskite solar cell by surface passivation using iso-butyl ammonium iodide, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp. 1963-1970. https://doi.org/10.1007/s12613-021-2382-3 |
Supab Choopun E-mail: supab99@gmail.com
[1] |
J.Y. Kim, J.W. Lee, H.S. Jung, H. Shin, and N.G. Park, High-efficiency perovskite solar cells, Chem. Rev., 120(2020), No. 15, p. 7867. doi: 10.1021/acs.chemrev.0c00107
|
[2] |
R. Wang, M. Mujahid, Y. Duan, Z.K. Wang, J.J. Xue, and Y. Yang, A review of perovskites solar cell stability, Adv. Funct. Mater., 29(2019), No. 47, art. No. 1808843. doi: 10.1002/adfm.201808843
|
[3] |
A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc., 131(2009), No. 17, p. 6050. doi: 10.1021/ja809598r
|
[4] |
National Renewable Energy Laboratory, Best Research-Cell Efficiency Chart [2021-02]. http://www.nrel.gov/pv/cell-efficiency.html
|
[5] |
D. Wang, M. Wright, N.K. Elumalai, and A. Uddin, Stability of perovskite solar cells, Sol. Energy Mater. Sol. Cells, 147(2016), p. 255. doi: 10.1016/j.solmat.2015.12.025
|
[6] |
G.D. Niu, X.D. Guo, and L.D. Wang, Review of recent progress in chemical stability of perovskite solar cells, J. Mater. Chem. A, 3(2015), No. 17, p. 8970. doi: 10.1039/C4TA04994B
|
[7] |
J. Peng, Y.L. Wu, W. Ye, D.A. Jacobs, H.P. Shen, X. Fu, Y.M. Wan, T. Duong, N.D. Wu, C. Barugkin, H.T. Nguyen, D.Y. Zhong, J.T. Li, T. Lu, Y. Liu, M.N. Lockrey, K.J. Weber, K.R. Catchpole, and T.P. White, Interface passivation using ultrathin polymer–fullerene films for high-efficiency perovskite solar cells with negligible hysteresis, Energy Environ. Sci., 10(2017), No. 8, p. 1792. doi: 10.1039/C7EE01096F
|
[8] |
Z.P. Wang, Q.Q. Lin, F.P. Chmiel, N. Sakai, L.M. Herz, and H.J. Snaith, Efficient ambient-air-stable solar cells with 2D–3D heterostructured butylammonium-caesium-formamidinium lead halide perovskites, Nat. Energy, 2(2017), No. 9, art. No. 17135. doi: 10.1038/nenergy.2017.135
|
[9] |
K. Wojciechowski, T. Leijtens, S. Siprova, C. Schlueter, M.T. Hörantner, J.T.W. Wang, C.Z. Li, A.K.Y. Jen, T.L. Lee, and H.J. Snaith, C60 as an efficient n-type compact layer in perovskite solar cells, J. Phys. Chem. Lett., 6(2015), No. 12, p. 2399. doi: 10.1021/acs.jpclett.5b00902
|
[10] |
F. Matteocci, L. Cinà, E. Lamanna, S. Cacovich, G. Divitini, P.A. Midgley, C. Ducati, and A. Di Carlo, Encapsulation for long-term stability enhancement of perovskite solar cells, Nano Energy, 30(2016), p. 162. doi: 10.1016/j.nanoen.2016.09.041
|
[11] |
Z.Y. Fu, M. Xu, Y.S. Sheng, Z.B. Yan, J. Meng, C.H. Tong, D. Li, Z.N. Wan, Y. Ming, A.Y. Mei, Y. Hu, Y.G. Rong, and H.W. Han, Encapsulation of printable mesoscopic perovskite solar cells enables high temperature and long-term outdoor stability, Adv. Funct. Mater., 29(2019), No. 16, art. No. 1809129. doi: 10.1002/adfm.201809129
|
[12] |
H. Zhang, H. Wang, W. Chen, and A.K.Y. Jen, CuGaO2: A promising inorganic hole-transporting material for highly efficient and stable perovskite solar cells, Adv. Mater., 29(2017), No. 8, art. No. 1604984. doi: 10.1002/adma.201604984
|
[13] |
J. Tirado, M. Vásquez-Montoya, C. Roldán-Carmona, M. Ralaiarisoa, N. Koch, M.K. Nazeeruddin, and F. Jaramillo, Air-stable n–i–p planar perovskite solar cells using nickel oxide nanocrystals as sole hole-transporting material, ACS Appl. Energy Mater., 2(2019), No. 7, p. 4890. doi: 10.1021/acsaem.9b00603
|
[14] |
J.B. You, L. Meng, T.B. Song, T.F. Guo, Y. Yang, W.H. Chang, Z.R. Hong, H.J. Chen, H.P. Zhou, Q. Chen, Y.S. Liu, N. De Marco, and Y. Yang, Improved air stability of perovskite solar cells via solution-processed metal oxide transport layers, Nat. Nanotechnol., 11(2016), No. 1, p. 75. doi: 10.1038/nnano.2015.230
|
[15] |
L. Chu and L.M. Ding, Self-assembled monolayers in perovskite solar cells, J. Semicond., 42(2021), No. 9, art. No. 090202. doi: 10.1088/1674-4926/42/9/090202
|
[16] |
Q. Jiang, Y. Zhao, X.W. Zhang, X.L. Yang, Y. Chen, Z.M. Chu, Q.F. Ye, X.X. Li, Z.G. Yin, and J.B. You, Surface passivation of perovskite film for efficient solar cells, Nat. Photonics, 13(2019), No. 7, p. 460. doi: 10.1038/s41566-019-0398-2
|
[17] |
J.M. Xia, C. Liang, S.L. Mei, H. Gu, B.C. He, Z.P. Zhang, T.H. Liu, K.Y. Wang, S.S. Wang, S. Chen, Y.Q. Cai, and G.C. Xing, Deep surface passivation for efficient and hydrophobic perovskite solar cells, J. Mater. Chem. A, 9(2021), No. 5, p. 2919. doi: 10.1039/D0TA10535J
|
[18] |
L. Chu, Pseudohalide anion engineering for highly efficient and stable perovskite solar cells, Matter, 4(2021), No. 6, p. 1762. doi: 10.1016/j.matt.2021.05.007
|
[19] |
L. Yangi, Y.W. Li, Y.X. Pei, J.Q. Wang, H. Lin, and X. Li, A novel 2D perovskite as surface “patches” for efficient flexible perovskite solar cells, J. Mater. Chem. A, 8(2020), No. 16, p. 7808. doi: 10.1039/C9TA13719J
|
[20] |
Y.F. Wang, H. Xu, F. Wang, D.T. Liu, H. Chen, H.L. Zheng, L. Ji, P. Zhang, T. Zhang, Z.D. Chen, J. Wu, L. Chen, and S.B. Li, Unveiling the guest effect of N-butylammonium iodide towards efficient and stable 2D–3D perovskite solar cells through sequential deposition process, Chem. Eng. J., 391(2020), art. No. 123589. doi: 10.1016/j.cej.2019.123589
|
[21] |
J. Horn, M. Scholz, K. Oum, T. Lenzer, and D. Schlettwein, Influence of phenylethylammonium iodide as additive in the formamidinium tin iodide perovskite on interfacial characteristics and charge carrier dynamics, APL Mater., 7(2019), No. 3, art. No. 031112. doi: 10.1063/1.5083624
|
[22] |
Y. Zhang, S. Jang, I.W. Hwang, Y.K. Jung, B.R. Lee, J.H. Kim, K.H. Kim, and S.H. Park, Bilateral interface engineering for efficient and stable perovskite solar cells using phenylethylammonium iodide, ACS Appl. Mater. Interfaces, 12(2020), No. 22, p. 24827. doi: 10.1021/acsami.0c05632
|
[23] |
Y.H. Liu, S. Akin, A. Hinderhofer, F.T. Eickemeyer, H.W. Zhu, J.Y. Seo, J.H. Zhang, F. Schreiber, H. Zhang, S.M. Zakeeruddin, A. Hagfeldt, M.I. Dar, and M. Grätzel, Stabilization of highly efficient and stable phase-pure FAPbI3 perovskite solar cells by molecularly tailored 2D-overlayers, Angew. Chem. Int. Ed., 59(2020), No. 36, p. 15688. doi: 10.1002/anie.202005211
|
[24] |
H.Y. Zheng, G.Z. Liu, L.Z. Zhu, J.J. Ye, X.H. Zhang, A. Alsaedi, T. Hayat, X. Pan, and S.Y. Dai, The effect of hydrophobicity of ammonium salts on stability of quasi-2D perovskite materials in moist condition, Adv. Energy Mater., 8(2018), No. 21, art. No. 1800051. doi: 10.1002/aenm.201800051
|
[25] |
Y.T. Zheng, T.T. Niu, X.Q. Ran, J. Qiu, B.X. Li, Y.D. Xia, Y.H. Chen, and W. Huang, Unique characteristics of 2D Ruddlesden–Popper (2DRP) perovskite for future photovoltaic application, J. Mater. Chem. A, 7(2019), No. 23, p. 13860. doi: 10.1039/C9TA03217G
|
[26] |
H.W. Zhu, Y.H. Liu, F.T. Eickemeyer, L.F. Pan, D. Ren, M.A. Ruiz-Preciado, B. Carlsen, B.W. Yang, X.F. Dong, Z.W. Wang, H.L. Liu, S.R. Wang, S.M. Zakeeruddin, A. Hagfeldt, M.I. Dar, X.G. Li, and M. Grätzel, Tailored amphiphilic molecular mitigators for stable perovskite solar cells with 23.5% efficiency, Adv. Mater., 32(2020), No. 12, art. No. 1907757. doi: 10.1002/adma.201907757
|
[27] |
Y. Cho, A.M. Soufiani, J.S. Yun, J. Kim, D.S. Lee, J. Seidel, X.F. Deng, M.A. Green, S.J. Huang, and A.W.Y. Ho-Baillie, Mixed 3D–2D passivation treatment for mixed-cation lead mixed-halide perovskite solar cells for higher efficiency and better stability, Adv. Energy Mater., 8(2018), No. 20, art. No. 1703392. doi: 10.1002/aenm.201703392
|
[28] |
V. Yarangsi, K. Hongsith, S. Sucharitakul, A. Ngamjarurojana, A. Tuantranont, P. Kumnorkaew, Y.X. Zhao, S. Phadungdhitidhada, and S. Choopun, Interface modification of SnO2 layer using p–n junction double layer for efficiency enhancement of perovskite solar cell, J. Phys. D: Appl. Phys., 53(2020), No. 50, art. No. 505103. doi: 10.1088/1361-6463/abb1e8
|
[29] |
K.C. Hsiao, M.H. Jao, B.T. Li, T.H. Lin, S.H.C. Liao, M.C. Wu, and W.F. Su, Enhancing efficiency and stability of hot casting p–i–n perovskite solar cell via dipolar ion passivation, ACS Appl. Energy Mater., 2(2019), No. 7, p. 4821. doi: 10.1021/acsaem.9b00486
|
[30] |
S.N. Habisreutinger, N.K. Noel, and H.J. Snaith, Hysteresis index: A figure without merit for quantifying hysteresis in perovskite solar cells, ACS Energy Lett., 3(2018), No. 10, p. 2472. doi: 10.1021/acsenergylett.8b01627
|
[31] |
Y.P. Li, H.J. Li, L.W. Tian, Q.Y. Wang, F.K. Wu, F. Zhang, L. Du, and Y.L. Huang, Vertical phase segregation suppression for efficient FA-based quasi-2D perovskite solar cells via HCl additive, J. Mater. Sci.: Mater. Electron., 31(2020), No. 15, p. 12301. doi: 10.1007/s10854-020-03775-z
|
[32] |
X.Q. Zhang, G. Wu, S.D. Yang, W.F. Fu, Z.Q. Zhang, C. Chen, W.Q. Liu, J.L. Yan, W.T. Yang, and H.Z. Chen, Vertically oriented 2D layered perovskite solar cells with enhanced efficiency and good stability, Small, 13(2017), No. 33, art. No. 1700611. doi: 10.1002/smll.201700611
|
[33] |
H. Choi, J. Jeong, H.B. Kim, S. Kim, B. Walker, G.H. Kim, and J.Y. Kim, Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells, Nano Energy, 7(2014), p. 80. doi: 10.1016/j.nanoen.2014.04.017
|
[34] |
M. Adnan and J.K. Lee, Highly efficient planar heterojunction perovskite solar cells with sequentially dip-coated deposited perovskite layers from a non-halide aqueous lead precursor, RSC Adv., 10(2020), No. 9, p. 5454. doi: 10.1039/C9RA09607H
|
[35] |
F. Huang, P. Siffalovic, B. Li, S.X. Yang, L.X. Zhang, P. Nadazdy, G.Z. Cao, and J.J. Tian, Controlled crystallinity and morphologies of 2D Ruddlesden-Popper perovskite films grown without anti-solvent for solar cells, Chem. Eng. J., 394(2020), art. No. 124959. doi: 10.1016/j.cej.2020.124959
|
[36] |
I. Hwang, M. Baek, and K. Yong, Core/shell structured TiO2/CdS electrode to enhance the light stability of perovskite solar cells, ACS Appl. Mater. Interfaces, 7(2015), No. 50, p. 27863. doi: 10.1021/acsami.5b09442
|
[37] |
G.T. Dai, L. Zhao, J. Li, L. Wan, F. Hu, Z.X. Xu, B.H. Dong, H.B. Lu, S.M. Wang, and J.G. Yu, A novel photoanode architecture of dye-sensitized solar cells based on TiO2 hollow sphere/nanorod array double-layer film, J. Colloid Interface Sci., 365(2012), No. 1, p. 46. doi: 10.1016/j.jcis.2011.08.073
|
[38] |
J.T. Park, D.K. Roh, W.S. Chi, R. Patel, and J.H. Kim, Fabrication of double layer photoelectrodes using hierarchical TiO2 nanospheres for dye-sensitized solar cells, J. Ind. Eng. Chem., 18(2012), No. 1, p. 449. doi: 10.1016/j.jiec.2011.11.029
|