留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 11
Nov.  2022

图(12)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  769
  • HTML全文浏览量:  295
  • PDF下载量:  72
  • 被引次数: 0
Wei Wu, Lili Zhu, Peilin Chai, Niyun Liu, Longfei Song, Zhiyong Liu,  and Xiaogang Li, Atmospheric corrosion behavior of Nb- and Sb-added weathering steels exposed to the South China Sea, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp. 2041-2052. https://doi.org/10.1007/s12613-021-2383-2
Cite this article as:
Wei Wu, Lili Zhu, Peilin Chai, Niyun Liu, Longfei Song, Zhiyong Liu,  and Xiaogang Li, Atmospheric corrosion behavior of Nb- and Sb-added weathering steels exposed to the South China Sea, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp. 2041-2052. https://doi.org/10.1007/s12613-021-2383-2
引用本文 PDF XML SpringerLink
研究论文

南海环境下含Nb和Sb耐候钢的大气腐蚀行为研究

  • 通讯作者:

    宋龙飞    E-mail: songlongfei@gzhu.edu.cn

    刘智勇    E-mail: liuzhiyong7804@126.com

文章亮点

  • (1) 首次研究了南海真实环境下含Nb和Sb耐候钢的大气腐蚀行为。
  • (2) Nb和Sb复合添加能够更好地优化锈蚀结构,促进致密保护α-FeOOH的形成。
  • (3) Nb和Sb抑制了耐候钢锈层底部坑底的局部酸化,减缓了局部腐蚀。
  • 随着我国海洋战略的不断推进,越来越多的耐候钢应用于海洋工程。然而,传统的耐候钢品种在热带海洋环境中面临着极大的腐蚀问题,通过微合金化提升耐候钢的耐蚀性能已经成为近年来的研究热点。本文旨在研究Nb和Sb微量元素添加对耐候钢在热带海洋环境中腐蚀行为的影响。本文制备了一系列含Nb和Sb的新型耐候钢,并结合现场暴露试验和腐蚀表征测试,详细阐明了这些新型耐候钢在南海真实环境中的大气腐蚀行为规律。研究结果表明,在钢中添加0.06wt% Nb和0.05wt% Sb能够一定程度上提升材料的耐蚀性,但Nb和Sb微量元素之间仍存在明显的差异。Nb元素的加入对常规耐候钢的表面锈层性质有一定的改善,但不能有效地抑制其电化学过程;而Sb元素的加入则能够同时从电化学性能和锈层性质两个方面提升材料耐蚀性。与仅仅添加0.06wt% Nb相比,0.05wt% Sb和0.06wt% Nb的复合添加能更好地优化锈层结构,促进更多的保护性α-FeOOH产物的形成,抵挡Cl-的扩散,减轻锈层下蚀坑底部的局部酸化现象。
  • Research Article

    Atmospheric corrosion behavior of Nb- and Sb-added weathering steels exposed to the South China Sea

    + Author Affiliations
    • The atmospheric corrosion behavior of new-type weathering steels (WSs) was comparatively studied, and the effects of Nb and Sb during corrosion were clarified in detail through field exposure and characterization. The results showed that the addition of Nb and Sb played positive roles in corrosion resistance, but there was a clear difference between these two elements. Nb addition slightly improved the rust property of conventional WS but could not inhibit the electrochemical process. In contrast, Sb addition significantly improved the corrosion resistance from the aspects of electrochemistry and rust layer. Compared with only 0.06wt% Nb, the combination of 0.05wt% Sb and 0.06wt% Nb could better optimize the rust structure, accelerate the formation of a high proportion of dense and protective α-FeOOH, repel the invasion of Cl, and retard the localized acidification at the bottom of the pit.
    • loading
    • [1]
      M. Morcillo, I. Díaz, H. Cano, B. Chico, and D. De La Fuente, Atmospheric corrosion of weathering steels. Overview for engineers. Part I: Basic concepts, Constr. Build. Mater., 213(2019), p. 723. doi: 10.1016/j.conbuildmat.2019.03.334
      [2]
      I. Díaz, H. Cano, P. Lopesino, D. De La Fuente, B. Chico, J.A. Jiménez, S.F. Medina, and M. Morcillo, Five-year atmospheric corrosion of Cu, Cr and Ni weathering steels in a wide range of environments, Corros. Sci., 141(2018), p. 146. doi: 10.1016/j.corsci.2018.06.039
      [3]
      G. Niu, Y.L. Chen, H.B. Wu, X. Wang, and D. Tang, Corrosion behavior of high-strength spring steel for high-speed railway, Int. J. Miner. Metall. Mater., 25(2018), No. 5, p. 527. doi: 10.1007/s12613-018-1599-2
      [4]
      M. Yamashita, T. Shimizu, H. Konishi, J. Mizuki, and H. Uchida, Structure and protective performance of atmospheric corrosion product of Fe–Cr alloy film analyzed by Mössbauer spectroscopy and with synchrotron radiation X-rays, Corros. Sci., 45(2003), No. 2, p. 381. doi: 10.1016/S0010-938X(02)00093-8
      [5]
      P.J. Wang, L.W. Ma, X.Q. Cheng, and X.G. Li, Influence of grain refinement on the corrosion behavior of metallic materials: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1112. doi: 10.1007/s12613-021-2308-0
      [6]
      Y.T. Ma, Y. Li, and F.H. Wang, Weatherability of 09CuPCrNi steel in a tropical marine environment, Corros. Sci., 51(2009), No. 8, p. 1725. doi: 10.1016/j.corsci.2009.04.024
      [7]
      Q.F. Xu, K.W. Gao, W.T. Lv, and X.L. Pang, Effects of alloyed Cr and Cu on the corrosion behavior of low-alloy steel in a simulated groundwater solution, Corros. Sci., 102(2016), p. 114. doi: 10.1016/j.corsci.2015.09.025
      [8]
      Y.L. Zhou, J. Chen, Y. Xu, and Z.Y. Liu, Effects of Cr, Ni and Cu on the corrosion behavior of low carbon microalloying steel in a Cl containing environment, J. Mater. Sci. Technol., 29(2013), No. 2, p. 168. doi: 10.1016/j.jmst.2012.12.013
      [9]
      S.Y. Cai, L. Wen, and Y. Jin, A comparative study on corrosion kinetic parameter estimation methods for the early stage corrosion of Q345B steel in 3.5wt% NaCl solution, Int. J. Miner. Metall. Mater., 24(2017), No. 10, p. 1112. doi: 10.1007/s12613-017-1502-6
      [10]
      W. Wu, X.Q. Cheng, H.X. Hou, B. Liu, and X.G. Li, Insight into the product film formed on Ni-advanced weathering steel in a tropical marine atmosphere, Appl. Surf. Sci., 436(2018), p. 80. doi: 10.1016/j.apsusc.2017.12.018
      [11]
      S.U. Koh, J.M. Lee, B.Y. Yang, and K.Y. Kim, Effect of molybdenum and chromium addition on the susceptibility to sulfide stress cracking of high-strength, low-alloy steels, Corrosion, 63(2007), No. 3, p. 220. doi: 10.5006/1.3278346
      [12]
      W. Wu, Z.Y. Liu, Q.Y. Wang, and X.G. Li, Improving the resistance of high-strength steel to SCC in a SO2-polluted marine atmosphere through Nb and Sb microalloying, Corros. Sci., 170(2020), art. No. 108693. doi: 10.1016/j.corsci.2020.108693
      [13]
      W. Wu, X.Q. Cheng, J.B. Zhao, and X.G. Li, Benefit of the corrosion product film formed on a new weathering steel containing 3% nickel under marine atmosphere in Maldives, Corros. Sci., 165(2020), art. No. 108416. doi: 10.1016/j.corsci.2019.108416
      [14]
      D.L. Li, G.Q. Fu, M.Y. Zhu, Q. Li, and C.X. Yin, Effect of Ni on the corrosion resistance of bridge steel in a simulated hot and humid coastal-industrial atmosphere, Int. J. Miner. Metall. Mater., 25(2018), No. 3, p. 325. doi: 10.1007/s12613-018-1576-9
      [15]
      L.Y. Song, Z.Y. Chen, and B.R. Hou, The role of the photovoltaic effect of γ-FeOOH and β-FeOOH on the corrosion of 09CuPCrNi weathering steel under visible light, Corros. Sci., 93(2015), p. 191. doi: 10.1016/j.corsci.2015.01.019
      [16]
      X.Q. Cheng, Y.W. Tian, X.G. Li, and C. Zhou, Corrosion behavior of nickel-containing weathering steel in simulated marine atmospheric environment, Mater. Corros., 65(2014), No. 10, p. 1033. doi: 10.1002/maco.201307447
      [17]
      I. Diaz, H. Cano, D. De La Fuente, B. Chico, J.M. Vega, and M. Morcillo, Atmospheric corrosion of Ni-advanced weathering steels in marine atmospheres of moderate salinity, Corros. Sci., 76(2013), p. 348. doi: 10.1016/j.corsci.2013.06.053
      [18]
      H. Cano, D. Neff, M. Morcillo, P. Dillmann, I. Diaz, and D. De La Fuente, Characterization of corrosion products formed on Ni 2.4wt%–Cu 0.5wt%–Cr 0.5wt% weathering steel exposed in marine atmospheres, Corros. Sci., 87(2014), p. 438. doi: 10.1016/j.corsci.2014.07.011
      [19]
      J.H. Jia, W. Wu, X.Q. Cheng, and J.B. Zhao, Ni-advanced weathering steels in Maldives for two years: Corrosion results of tropical marine field test, Constr. Build. Mater., 245(2020), art. No. 118463. doi: 10.1016/j.conbuildmat.2020.118463
      [20]
      J.H. Jia, X.Q. Cheng, X.J. Yang, X.G. Li, and W. Li, A study for corrosion behavior of a new-type weathering steel used in harsh marine environment, Constr. Build. Mater., 259(2020), art. No. 119760. doi: 10.1016/j.conbuildmat.2020.119760
      [21]
      E.D. Fan, S.Q. Zhang, D.H. Xie, Q.Y. Zhao, X.G. Li, and Y.H. Huang, Effect of nanosized NbC precipitates on hydrogen-induced cracking of high-strength low-alloy steel, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 249. doi: 10.1007/s12613-020-2167-0
      [22]
      V.F.C. Lins, R.B. Soares, and E.A. Alvarenga, Corrosion behaviour of experimental copper-antimony-molybdenum carbon steels in industrial and marine atmospheres and in a sulphuric acid aqueous solution, Corros. Eng. Sci. Technol., 52(2017), No. 5, p. 397. doi: 10.1080/1478422X.2017.1305537
      [23]
      N.D. Nam and J.G. Kim, Effect of niobium on the corrosion behaviour of low alloy steel in sulfuric acid solution, Corros. Sci., 52(2010), No. 10, p. 3377. doi: 10.1016/j.corsci.2010.06.010
      [24]
      D.P. Le, W.S. Ji, J.G. Kim, K.J. Jeong, and S.H. Lee, Effect of antimony on the corrosion behavior of low-alloy steel for flue gas desulfurization system, Corros. Sci., 50(2008), No. 4, p. 1195. doi: 10.1016/j.corsci.2007.11.027
      [25]
      S.S. El-Egamy, Electrochemical behavior of antimony and antimony oxide films in acid solutions, Corrosion, 62(2006), No. 9, p. 739. doi: 10.5006/1.3278298
      [26]
      S.A. Park, S.H. Kim, Y.H. Yoo, and J.G. Kim, Effect of chloride ions on the corrosion behavior of low-alloy steel containing copper and antimony in sulfuric acid solution, Met. Mater. Int., 21(2015), No. 3, p. 470. doi: 10.1007/s12540-015-4421-y
      [27]
      Y. Yang, X.Q. Cheng, J.B. Zhao, Y. Fan, and X.G. Li, A study of rust layer of low alloy structural steel containing 0.1% Sb in atmospheric environment of the Yellow Sea in China, Corros. Sci., 188(2021), art. No. 109549. doi: 10.1016/j.corsci.2021.109549
      [28]
      C. Liu, R.I. Revilla, D.W. Zhang, Z.Y. Liu, A. Lutz, F. Zhang, T.L. Zhao, H.C. Ma, X.G. Li, and H. Terryn, Role of Al2O3 inclusions on the localized corrosion of Q460NH weathering steel in marine environment, Corros. Sci., 138(2018), p. 96. doi: 10.1016/j.corsci.2018.04.007
      [29]
      C.F. Dong, H. Luo, K. Xiao, Y. Ding, P.H. Li, and X.G. Li, Electrochemical behavior of 304 stainless steel in marine atmosphere and its simulated solution, Anal. Lett., 46(2013), No. 1, p. 142. doi: 10.1080/00032719.2012.706847
      [30]
      C. Thee, L. Hao, J.H. Dong, X. Mu, X. Wei, X.F. Li, and W. Ke, Atmospheric corrosion monitoring of a weathering steel under an electrolyte film in cyclic wet-dry condition, Corros. Sci., 78(2014), p. 130. doi: 10.1016/j.corsci.2013.09.008
      [31]
      W. Wu, Z.P. Zeng, X.Q. Cheng, X.G. Li, and B. Liu, Atmospheric corrosion behavior and mechanism of a Ni-advanced weathering steel in simulated tropical marine environment, J. Mater. Eng. Perform., 26(2017), No. 12, p. 6075. doi: 10.1007/s11665-017-3043-6
      [32]
      M.A. Arafin and J.A. Szpunar, Effect of bainitic microstructure on the susceptibility of pipeline steels to hydrogen induced cracking, Mater. Sci. Eng. A, 528(2011), No. 15, p. 4927. doi: 10.1016/j.msea.2011.03.036
      [33]
      H.Y. Tian, X. Wang, Z.Y. Cui, Q.K. Lu, L.W. Wang, L. Lei, Y. Li, and D.W. Zhang, Electrochemical corrosion, hydrogen permeation and stress corrosion cracking behavior of E690 steel in thiosulfate-containing artificial seawater, Corros. Sci., 144(2018), p. 145. doi: 10.1016/j.corsci.2018.08.048
      [34]
      N. Takayama, G. Miyamoto, and T. Furuhara, Chemistry and three-dimensional morphology of martensite-austenite constituent in the bainite structure of low-carbon low-alloy steels, Acta Mater., 145(2018), p. 154. doi: 10.1016/j.actamat.2017.11.036
      [35]
      J. Zhang, H. Ding, R.D.K. Misra, and C. Wang, Microstructural evolution and consequent strengthening through niobium-microalloying in a low carbon quenched and partitioned steel, Mater. Sci. Eng. A, 641(2015), p. 242. doi: 10.1016/j.msea.2015.06.050
      [36]
      I. Dey, S. Chandra, R. Saha, and S.K. Ghosh, Effect of Nb micro-alloying on microstructure and properties of thermo-mechanically processed high carbon pearlitic steel, Mater. Charact., 140(2018), p. 45. doi: 10.1016/j.matchar.2018.03.038
      [37]
      S.Q. Zhang, E.D. Fan, J.F. Wan, J. Liu, Y.H. Huang, and X.G. Li, Effect of Nb on the hydrogen-induced cracking of high-strength low-alloy steel, Corros. Sci., 139(2018), p. 83. doi: 10.1016/j.corsci.2018.04.041
      [38]
      H.M. Zhang, Y. Li, L. Yan, F.F. Ai, Y.Y. Zhu, and Z.J. Jiang, Effect of large load on the wear and corrosion behavior of high-strength EH47 hull steel in 3.5wt% NaCl solution with sand, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1525. doi: 10.1007/s12613-020-1978-3
      [39]
      N. Malatji, A.P.I. Popoola, T. Lengopeng, and S. Pityana, Effect of Nb addition on the microstructural, mechanical and electrochemical characteristics of AlCrFeNiCu high-entropy alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1332. doi: 10.1007/s12613-020-2178-x
      [40]
      G. Baril, G. Galicia, C. Deslouis, N. Pébère, B. Tribollet, and V. Vivier, An impedance investigation of the mechanism of pure magnesium corrosion in sodium sulfate solutions, J. Electrochem. Soc., 154(2007), No. 2, art. No. C108. doi: 10.1149/1.2401056
      [41]
      Y.G. Yang, T. Zhang, Y.W. Shao, G.Z. Meng, and F.H. Wang, Effect of hydrostatic pressure on the corrosion behaviour of Ni-Cr-Mo-V high strength steel, Corros. Sci., 52(2010), No. 8, p. 2697. doi: 10.1016/j.corsci.2010.04.025
      [42]
      G. Baril and N. Pébère, The corrosion of pure magnesium in aerated and deaerated sodium sulphate solutions, Corros. Sci., 43(2001), No. 3, p. 471. doi: 10.1016/S0010-938X(00)00095-0
      [43]
      T.L. Zhao, Z.Y. Liu, C.W. Du, M.H. Sun, and X.G. Li, Effects of cathodic polarization on corrosion fatigue life of E690 steel in simulated seawater, Int. J. Fatigue, 110(2018), p. 105. doi: 10.1016/j.ijfatigue.2018.01.008
      [44]
      J.L. Yang, Y.F. Lu, Z.H. Guo, J.F. Gu, and C.X. Gu, Corrosion behaviour of a quenched and partitioned medium carbon steel in 3.5 wt.% NaCl solution, Corros. Sci., 130(2018), p. 64. doi: 10.1016/j.corsci.2017.10.027
      [45]
      B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, and M. Musiani, Determination of effective capacitance and film thickness from constant-phase-element parameters, Electrochim. Acta, 55(2010), No. 21, p. 6218. doi: 10.1016/j.electacta.2009.10.065
      [46]
      O.E. Barcia, E. D'Elia, I. Frateur, O.R. Mattos, N. Pébère, and B. Tribollet, Application of the impedance model of de levie for the characterization of porous electrodes, Electrochim. Acta, 47(2002), No. 13-14, p. 2109. doi: 10.1016/S0013-4686(02)00081-6
      [47]
      W.K. Hao, Z.Y. Liu, W. Wu, X.G. Li, C.W. Du, and D.W. Zhang, Electrochemical characterization and stress corrosion cracking of E690 high strength steel in wet-dry cyclic marine environments, Mater. Sci. Eng. A, 710(2018), p. 318. doi: 10.1016/j.msea.2017.10.042
      [48]
      W.R. Osório, L.C. Peixoto, L.R. Garcia, and A. Garcia, Electrochemical corrosion response of a low carbon heat treated steel in a NaCl solution, Mater. Corros., 60(2009), No. 10, p. 804. doi: 10.1002/maco.200805181
      [49]
      S.Y. Huang, W. Wu, Y.J. Su, L.J. Qiao, and Y. Yan, Insight into the corrosion behaviour and degradation mechanism of pure zinc in simulated body fluid, Corros. Sci., 178(2021), art. No. 109071. doi: 10.1016/j.corsci.2020.109071
      [50]
      M. Yamashita, H. Konishi, T. Kozakura, J. Mizuki, and H. Uchida, In situ observation of initial rust formation process on carbon steel under Na2SO4 and NaCl solution films with wet/dry cycles using synchrotron radiation X-rays, Corros. Sci., 47(2005), No. 10, p. 2492. doi: 10.1016/j.corsci.2004.10.021
      [51]
      W. Wu, Z.Y. Dai, Z.Y. Liu, C. Liu, and X.G. Li, Synergy of Cu and Sb to enhance the resistance of 3%Ni weathering steel to marine atmospheric corrosion, Corros. Sci., 183(2021), art. No. 109353. doi: 10.1016/j.corsci.2021.109353
      [52]
      M. Morcillo, I. Díaz, B. Chico, H. Cano, and D. De La Fuente, Weathering steels: From empirical development to scientific design. A review, Corros. Sci., 83(2014), p. 6. doi: 10.1016/j.corsci.2014.03.006
      [53]
      T.Y. Zhang, W. Liu, Z. Yin, B.J. Dong, Y.G. Zhao, Y.M. Fan, J.S. Wu, Z. Zhang, and X.G. Li, Effects of the addition of Cu and Ni on the corrosion behavior of weathering steels in corrosive industrial environments, J. Mater. Eng. Perform., 29(2020), No. 4, p. 2531. doi: 10.1007/s11665-020-04738-5
      [54]
      M. Morcillo, I. Díaz, H. Cano, B. Chico, and D. De La Fuente, Atmospheric corrosion of weathering steels. Overview for engineers. Part II: Testing, inspection, maintenance, Constr. Build. Mater., 222(2019), p. 750. doi: 10.1016/j.conbuildmat.2019.06.155
      [55]
      D. De La Fuente, I. Díaz, J. Simancas, B. Chico, and M. Morcillo, Long-term atmospheric corrosion of mild steel, Corros. Sci., 53(2011), No. 2, p. 604. doi: 10.1016/j.corsci.2010.10.007
      [56]
      J. Aramendia, L. Gomez-Nubla, I. Arrizabalaga, N. Prieto-Taboada, K. Castro, and J.M. Madariaga, Multianalytical approach to study the dissolution process of weathering steel: The role of urban pollution, Corros. Sci., 76(2013), p. 154. doi: 10.1016/j.corsci.2013.06.038
      [57]
      J.R. Galvele, Transport processes and the mechanism of pitting of metals, J. Electrochem. Soc., 123(1976), No. 4, p. 464. doi: 10.1149/1.2132857
      [58]
      R. Newman, Pitting corrosion of metals, Electrochem. Soc. Interface, 19(2010), No. 1, p. 33. doi: 10.1149/2.F03101if

    Catalog


    • /

      返回文章
      返回