Cite this article as: |
Wei Wu, Lili Zhu, Peilin Chai, Niyun Liu, Longfei Song, Zhiyong Liu, and Xiaogang Li, Atmospheric corrosion behavior of Nb- and Sb-added weathering steels exposed to the South China Sea, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp. 2041-2052. https://doi.org/10.1007/s12613-021-2383-2 |
宋龙飞 E-mail: songlongfei@gzhu.edu.cn
刘智勇 E-mail: liuzhiyong7804@126.com
[1] |
M. Morcillo, I. Díaz, H. Cano, B. Chico, and D. De La Fuente, Atmospheric corrosion of weathering steels. Overview for engineers. Part I: Basic concepts, Constr. Build. Mater., 213(2019), p. 723. doi: 10.1016/j.conbuildmat.2019.03.334
|
[2] |
I. Díaz, H. Cano, P. Lopesino, D. De La Fuente, B. Chico, J.A. Jiménez, S.F. Medina, and M. Morcillo, Five-year atmospheric corrosion of Cu, Cr and Ni weathering steels in a wide range of environments, Corros. Sci., 141(2018), p. 146. doi: 10.1016/j.corsci.2018.06.039
|
[3] |
G. Niu, Y.L. Chen, H.B. Wu, X. Wang, and D. Tang, Corrosion behavior of high-strength spring steel for high-speed railway, Int. J. Miner. Metall. Mater., 25(2018), No. 5, p. 527. doi: 10.1007/s12613-018-1599-2
|
[4] |
M. Yamashita, T. Shimizu, H. Konishi, J. Mizuki, and H. Uchida, Structure and protective performance of atmospheric corrosion product of Fe–Cr alloy film analyzed by Mössbauer spectroscopy and with synchrotron radiation X-rays, Corros. Sci., 45(2003), No. 2, p. 381. doi: 10.1016/S0010-938X(02)00093-8
|
[5] |
P.J. Wang, L.W. Ma, X.Q. Cheng, and X.G. Li, Influence of grain refinement on the corrosion behavior of metallic materials: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1112. doi: 10.1007/s12613-021-2308-0
|
[6] |
Y.T. Ma, Y. Li, and F.H. Wang, Weatherability of 09CuPCrNi steel in a tropical marine environment, Corros. Sci., 51(2009), No. 8, p. 1725. doi: 10.1016/j.corsci.2009.04.024
|
[7] |
Q.F. Xu, K.W. Gao, W.T. Lv, and X.L. Pang, Effects of alloyed Cr and Cu on the corrosion behavior of low-alloy steel in a simulated groundwater solution, Corros. Sci., 102(2016), p. 114. doi: 10.1016/j.corsci.2015.09.025
|
[8] |
Y.L. Zhou, J. Chen, Y. Xu, and Z.Y. Liu, Effects of Cr, Ni and Cu on the corrosion behavior of low carbon microalloying steel in a Cl− containing environment, J. Mater. Sci. Technol., 29(2013), No. 2, p. 168. doi: 10.1016/j.jmst.2012.12.013
|
[9] |
S.Y. Cai, L. Wen, and Y. Jin, A comparative study on corrosion kinetic parameter estimation methods for the early stage corrosion of Q345B steel in 3.5wt% NaCl solution, Int. J. Miner. Metall. Mater., 24(2017), No. 10, p. 1112. doi: 10.1007/s12613-017-1502-6
|
[10] |
W. Wu, X.Q. Cheng, H.X. Hou, B. Liu, and X.G. Li, Insight into the product film formed on Ni-advanced weathering steel in a tropical marine atmosphere, Appl. Surf. Sci., 436(2018), p. 80. doi: 10.1016/j.apsusc.2017.12.018
|
[11] |
S.U. Koh, J.M. Lee, B.Y. Yang, and K.Y. Kim, Effect of molybdenum and chromium addition on the susceptibility to sulfide stress cracking of high-strength, low-alloy steels, Corrosion, 63(2007), No. 3, p. 220. doi: 10.5006/1.3278346
|
[12] |
W. Wu, Z.Y. Liu, Q.Y. Wang, and X.G. Li, Improving the resistance of high-strength steel to SCC in a SO2-polluted marine atmosphere through Nb and Sb microalloying, Corros. Sci., 170(2020), art. No. 108693. doi: 10.1016/j.corsci.2020.108693
|
[13] |
W. Wu, X.Q. Cheng, J.B. Zhao, and X.G. Li, Benefit of the corrosion product film formed on a new weathering steel containing 3% nickel under marine atmosphere in Maldives, Corros. Sci., 165(2020), art. No. 108416. doi: 10.1016/j.corsci.2019.108416
|
[14] |
D.L. Li, G.Q. Fu, M.Y. Zhu, Q. Li, and C.X. Yin, Effect of Ni on the corrosion resistance of bridge steel in a simulated hot and humid coastal-industrial atmosphere, Int. J. Miner. Metall. Mater., 25(2018), No. 3, p. 325. doi: 10.1007/s12613-018-1576-9
|
[15] |
L.Y. Song, Z.Y. Chen, and B.R. Hou, The role of the photovoltaic effect of γ-FeOOH and β-FeOOH on the corrosion of 09CuPCrNi weathering steel under visible light, Corros. Sci., 93(2015), p. 191. doi: 10.1016/j.corsci.2015.01.019
|
[16] |
X.Q. Cheng, Y.W. Tian, X.G. Li, and C. Zhou, Corrosion behavior of nickel-containing weathering steel in simulated marine atmospheric environment, Mater. Corros., 65(2014), No. 10, p. 1033. doi: 10.1002/maco.201307447
|
[17] |
I. Diaz, H. Cano, D. De La Fuente, B. Chico, J.M. Vega, and M. Morcillo, Atmospheric corrosion of Ni-advanced weathering steels in marine atmospheres of moderate salinity, Corros. Sci., 76(2013), p. 348. doi: 10.1016/j.corsci.2013.06.053
|
[18] |
H. Cano, D. Neff, M. Morcillo, P. Dillmann, I. Diaz, and D. De La Fuente, Characterization of corrosion products formed on Ni 2.4wt%–Cu 0.5wt%–Cr 0.5wt% weathering steel exposed in marine atmospheres, Corros. Sci., 87(2014), p. 438. doi: 10.1016/j.corsci.2014.07.011
|
[19] |
J.H. Jia, W. Wu, X.Q. Cheng, and J.B. Zhao, Ni-advanced weathering steels in Maldives for two years: Corrosion results of tropical marine field test, Constr. Build. Mater., 245(2020), art. No. 118463. doi: 10.1016/j.conbuildmat.2020.118463
|
[20] |
J.H. Jia, X.Q. Cheng, X.J. Yang, X.G. Li, and W. Li, A study for corrosion behavior of a new-type weathering steel used in harsh marine environment, Constr. Build. Mater., 259(2020), art. No. 119760. doi: 10.1016/j.conbuildmat.2020.119760
|
[21] |
E.D. Fan, S.Q. Zhang, D.H. Xie, Q.Y. Zhao, X.G. Li, and Y.H. Huang, Effect of nanosized NbC precipitates on hydrogen-induced cracking of high-strength low-alloy steel, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 249. doi: 10.1007/s12613-020-2167-0
|
[22] |
V.F.C. Lins, R.B. Soares, and E.A. Alvarenga, Corrosion behaviour of experimental copper-antimony-molybdenum carbon steels in industrial and marine atmospheres and in a sulphuric acid aqueous solution, Corros. Eng. Sci. Technol., 52(2017), No. 5, p. 397. doi: 10.1080/1478422X.2017.1305537
|
[23] |
N.D. Nam and J.G. Kim, Effect of niobium on the corrosion behaviour of low alloy steel in sulfuric acid solution, Corros. Sci., 52(2010), No. 10, p. 3377. doi: 10.1016/j.corsci.2010.06.010
|
[24] |
D.P. Le, W.S. Ji, J.G. Kim, K.J. Jeong, and S.H. Lee, Effect of antimony on the corrosion behavior of low-alloy steel for flue gas desulfurization system, Corros. Sci., 50(2008), No. 4, p. 1195. doi: 10.1016/j.corsci.2007.11.027
|
[25] |
S.S. El-Egamy, Electrochemical behavior of antimony and antimony oxide films in acid solutions, Corrosion, 62(2006), No. 9, p. 739. doi: 10.5006/1.3278298
|
[26] |
S.A. Park, S.H. Kim, Y.H. Yoo, and J.G. Kim, Effect of chloride ions on the corrosion behavior of low-alloy steel containing copper and antimony in sulfuric acid solution, Met. Mater. Int., 21(2015), No. 3, p. 470. doi: 10.1007/s12540-015-4421-y
|
[27] |
Y. Yang, X.Q. Cheng, J.B. Zhao, Y. Fan, and X.G. Li, A study of rust layer of low alloy structural steel containing 0.1% Sb in atmospheric environment of the Yellow Sea in China, Corros. Sci., 188(2021), art. No. 109549. doi: 10.1016/j.corsci.2021.109549
|
[28] |
C. Liu, R.I. Revilla, D.W. Zhang, Z.Y. Liu, A. Lutz, F. Zhang, T.L. Zhao, H.C. Ma, X.G. Li, and H. Terryn, Role of Al2O3 inclusions on the localized corrosion of Q460NH weathering steel in marine environment, Corros. Sci., 138(2018), p. 96. doi: 10.1016/j.corsci.2018.04.007
|
[29] |
C.F. Dong, H. Luo, K. Xiao, Y. Ding, P.H. Li, and X.G. Li, Electrochemical behavior of 304 stainless steel in marine atmosphere and its simulated solution, Anal. Lett., 46(2013), No. 1, p. 142. doi: 10.1080/00032719.2012.706847
|
[30] |
C. Thee, L. Hao, J.H. Dong, X. Mu, X. Wei, X.F. Li, and W. Ke, Atmospheric corrosion monitoring of a weathering steel under an electrolyte film in cyclic wet-dry condition, Corros. Sci., 78(2014), p. 130. doi: 10.1016/j.corsci.2013.09.008
|
[31] |
W. Wu, Z.P. Zeng, X.Q. Cheng, X.G. Li, and B. Liu, Atmospheric corrosion behavior and mechanism of a Ni-advanced weathering steel in simulated tropical marine environment, J. Mater. Eng. Perform., 26(2017), No. 12, p. 6075. doi: 10.1007/s11665-017-3043-6
|
[32] |
M.A. Arafin and J.A. Szpunar, Effect of bainitic microstructure on the susceptibility of pipeline steels to hydrogen induced cracking, Mater. Sci. Eng. A, 528(2011), No. 15, p. 4927. doi: 10.1016/j.msea.2011.03.036
|
[33] |
H.Y. Tian, X. Wang, Z.Y. Cui, Q.K. Lu, L.W. Wang, L. Lei, Y. Li, and D.W. Zhang, Electrochemical corrosion, hydrogen permeation and stress corrosion cracking behavior of E690 steel in thiosulfate-containing artificial seawater, Corros. Sci., 144(2018), p. 145. doi: 10.1016/j.corsci.2018.08.048
|
[34] |
N. Takayama, G. Miyamoto, and T. Furuhara, Chemistry and three-dimensional morphology of martensite-austenite constituent in the bainite structure of low-carbon low-alloy steels, Acta Mater., 145(2018), p. 154. doi: 10.1016/j.actamat.2017.11.036
|
[35] |
J. Zhang, H. Ding, R.D.K. Misra, and C. Wang, Microstructural evolution and consequent strengthening through niobium-microalloying in a low carbon quenched and partitioned steel, Mater. Sci. Eng. A, 641(2015), p. 242. doi: 10.1016/j.msea.2015.06.050
|
[36] |
I. Dey, S. Chandra, R. Saha, and S.K. Ghosh, Effect of Nb micro-alloying on microstructure and properties of thermo-mechanically processed high carbon pearlitic steel, Mater. Charact., 140(2018), p. 45. doi: 10.1016/j.matchar.2018.03.038
|
[37] |
S.Q. Zhang, E.D. Fan, J.F. Wan, J. Liu, Y.H. Huang, and X.G. Li, Effect of Nb on the hydrogen-induced cracking of high-strength low-alloy steel, Corros. Sci., 139(2018), p. 83. doi: 10.1016/j.corsci.2018.04.041
|
[38] |
H.M. Zhang, Y. Li, L. Yan, F.F. Ai, Y.Y. Zhu, and Z.J. Jiang, Effect of large load on the wear and corrosion behavior of high-strength EH47 hull steel in 3.5wt% NaCl solution with sand, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1525. doi: 10.1007/s12613-020-1978-3
|
[39] |
N. Malatji, A.P.I. Popoola, T. Lengopeng, and S. Pityana, Effect of Nb addition on the microstructural, mechanical and electrochemical characteristics of AlCrFeNiCu high-entropy alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 10, p. 1332. doi: 10.1007/s12613-020-2178-x
|
[40] |
G. Baril, G. Galicia, C. Deslouis, N. Pébère, B. Tribollet, and V. Vivier, An impedance investigation of the mechanism of pure magnesium corrosion in sodium sulfate solutions, J. Electrochem. Soc., 154(2007), No. 2, art. No. C108. doi: 10.1149/1.2401056
|
[41] |
Y.G. Yang, T. Zhang, Y.W. Shao, G.Z. Meng, and F.H. Wang, Effect of hydrostatic pressure on the corrosion behaviour of Ni-Cr-Mo-V high strength steel, Corros. Sci., 52(2010), No. 8, p. 2697. doi: 10.1016/j.corsci.2010.04.025
|
[42] |
G. Baril and N. Pébère, The corrosion of pure magnesium in aerated and deaerated sodium sulphate solutions, Corros. Sci., 43(2001), No. 3, p. 471. doi: 10.1016/S0010-938X(00)00095-0
|
[43] |
T.L. Zhao, Z.Y. Liu, C.W. Du, M.H. Sun, and X.G. Li, Effects of cathodic polarization on corrosion fatigue life of E690 steel in simulated seawater, Int. J. Fatigue, 110(2018), p. 105. doi: 10.1016/j.ijfatigue.2018.01.008
|
[44] |
J.L. Yang, Y.F. Lu, Z.H. Guo, J.F. Gu, and C.X. Gu, Corrosion behaviour of a quenched and partitioned medium carbon steel in 3.5 wt.% NaCl solution, Corros. Sci., 130(2018), p. 64. doi: 10.1016/j.corsci.2017.10.027
|
[45] |
B. Hirschorn, M.E. Orazem, B. Tribollet, V. Vivier, I. Frateur, and M. Musiani, Determination of effective capacitance and film thickness from constant-phase-element parameters, Electrochim. Acta, 55(2010), No. 21, p. 6218. doi: 10.1016/j.electacta.2009.10.065
|
[46] |
O.E. Barcia, E. D'Elia, I. Frateur, O.R. Mattos, N. Pébère, and B. Tribollet, Application of the impedance model of de levie for the characterization of porous electrodes, Electrochim. Acta, 47(2002), No. 13-14, p. 2109. doi: 10.1016/S0013-4686(02)00081-6
|
[47] |
W.K. Hao, Z.Y. Liu, W. Wu, X.G. Li, C.W. Du, and D.W. Zhang, Electrochemical characterization and stress corrosion cracking of E690 high strength steel in wet-dry cyclic marine environments, Mater. Sci. Eng. A, 710(2018), p. 318. doi: 10.1016/j.msea.2017.10.042
|
[48] |
W.R. Osório, L.C. Peixoto, L.R. Garcia, and A. Garcia, Electrochemical corrosion response of a low carbon heat treated steel in a NaCl solution, Mater. Corros., 60(2009), No. 10, p. 804. doi: 10.1002/maco.200805181
|
[49] |
S.Y. Huang, W. Wu, Y.J. Su, L.J. Qiao, and Y. Yan, Insight into the corrosion behaviour and degradation mechanism of pure zinc in simulated body fluid, Corros. Sci., 178(2021), art. No. 109071. doi: 10.1016/j.corsci.2020.109071
|
[50] |
M. Yamashita, H. Konishi, T. Kozakura, J. Mizuki, and H. Uchida, In situ observation of initial rust formation process on carbon steel under Na2SO4 and NaCl solution films with wet/dry cycles using synchrotron radiation X-rays, Corros. Sci., 47(2005), No. 10, p. 2492. doi: 10.1016/j.corsci.2004.10.021
|
[51] |
W. Wu, Z.Y. Dai, Z.Y. Liu, C. Liu, and X.G. Li, Synergy of Cu and Sb to enhance the resistance of 3%Ni weathering steel to marine atmospheric corrosion, Corros. Sci., 183(2021), art. No. 109353. doi: 10.1016/j.corsci.2021.109353
|
[52] |
M. Morcillo, I. Díaz, B. Chico, H. Cano, and D. De La Fuente, Weathering steels: From empirical development to scientific design. A review, Corros. Sci., 83(2014), p. 6. doi: 10.1016/j.corsci.2014.03.006
|
[53] |
T.Y. Zhang, W. Liu, Z. Yin, B.J. Dong, Y.G. Zhao, Y.M. Fan, J.S. Wu, Z. Zhang, and X.G. Li, Effects of the addition of Cu and Ni on the corrosion behavior of weathering steels in corrosive industrial environments, J. Mater. Eng. Perform., 29(2020), No. 4, p. 2531. doi: 10.1007/s11665-020-04738-5
|
[54] |
M. Morcillo, I. Díaz, H. Cano, B. Chico, and D. De La Fuente, Atmospheric corrosion of weathering steels. Overview for engineers. Part II: Testing, inspection, maintenance, Constr. Build. Mater., 222(2019), p. 750. doi: 10.1016/j.conbuildmat.2019.06.155
|
[55] |
D. De La Fuente, I. Díaz, J. Simancas, B. Chico, and M. Morcillo, Long-term atmospheric corrosion of mild steel, Corros. Sci., 53(2011), No. 2, p. 604. doi: 10.1016/j.corsci.2010.10.007
|
[56] |
J. Aramendia, L. Gomez-Nubla, I. Arrizabalaga, N. Prieto-Taboada, K. Castro, and J.M. Madariaga, Multianalytical approach to study the dissolution process of weathering steel: The role of urban pollution, Corros. Sci., 76(2013), p. 154. doi: 10.1016/j.corsci.2013.06.038
|
[57] |
J.R. Galvele, Transport processes and the mechanism of pitting of metals, J. Electrochem. Soc., 123(1976), No. 4, p. 464. doi: 10.1149/1.2132857
|
[58] |
R. Newman, Pitting corrosion of metals, Electrochem. Soc. Interface, 19(2010), No. 1, p. 33. doi: 10.1149/2.F03101if
|