留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 7
Jul.  2022

图(10)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  1538
  • HTML全文浏览量:  320
  • PDF下载量:  58
  • 被引次数: 0
Chao He, Yibing Zhang, Ming Yuan, Bin Jiang, Qinghang Wang, Yanfu Chai, Guangsheng Huang, Dingfei Zhang,  and Fusheng Pan, Improving the room-temperature bendability of Mg–3Al–1Zn alloy sheet by introducing a bimodal microstructure and the texture re-orientation, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1322-1333. https://doi.org/10.1007/s12613-021-2384-1
Cite this article as:
Chao He, Yibing Zhang, Ming Yuan, Bin Jiang, Qinghang Wang, Yanfu Chai, Guangsheng Huang, Dingfei Zhang,  and Fusheng Pan, Improving the room-temperature bendability of Mg–3Al–1Zn alloy sheet by introducing a bimodal microstructure and the texture re-orientation, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1322-1333. https://doi.org/10.1007/s12613-021-2384-1
引用本文 PDF XML SpringerLink
研究论文

通过引入双模态组织和织构再取向工艺来提高AZ31镁合金的室温弯曲性能

  • 通讯作者:

    袁明    E-mail: yuanming@cqu.edu.cn

    蒋斌    E-mail: jiangbinrong@cqu.edu.cn

文章亮点

  • (1) 在轧制态AZ31镁合金板材的变形带区域,观察到晶体c-轴偏离了板材法向。
  • (2) 通过预压缩退火工艺,在AZ31镁合金板材中引入了双模态组织。
  • (3) 经过预变形退火后,板材的弯曲性能得到了大幅度的提升。
  • 变形镁合金由于其较强的基面织构,在室温条件下通常表现出很差的弯曲成形性能。本文通过预压缩和退火(PCA)工艺引入双模态组织,显著提高了AZ31合金板材的弯曲成形性能,在60°的V形弯曲模具下,其最终成形角度从112°提升到68°。这种工艺使强基面织构向轧制方向(RD)偏移,导致在RD拉伸应力条件下具有更高的基面滑移施密特因子(SF)。此外,在PCA工艺的退火过程中,应变诱导晶界迁移引起变形晶粒的异常生长,导致晶粒粗化;退火过程的退孪生机制导致细小晶粒的产生;这种再结晶机制的差异导致了PCA试样中双模态组织的产生。而双模态组织的引入打乱了初始热轧AZ31B合金板材的变形带(DBs)的分布,使弯曲试样的外侧拉伸区域的应变分布更加均匀,同时粗大晶粒中产生大量拉伸孪晶。基面滑移和拉伸孪晶的同时产生能更好的协调弯曲试样外侧的拉伸应变。因此,双模态组织、基面织构的偏移和变形带的重新分布是AZ31合金弯曲性能显著提高的主要原因。
  • Research Article

    Improving the room-temperature bendability of Mg–3Al–1Zn alloy sheet by introducing a bimodal microstructure and the texture re-orientation

    + Author Affiliations
    • A significant enhancement of bendability was achieved by the introduction of bimodal microstructure for AZ31B alloy sheets via pre-compression and subsequent annealing (PCA) process. This combined treatment led to the c-axis of the extracted samples that were inclined by 30° to the rolling direction (30° sample) further shifting toward the rolling direction (RD) and resulting in a higher Schmid factor (SF) value of basal slip under the RD tensile stress. Furthermore, the bimodal microstructure that was introduced by the PCA process broke the damage bands (DBs) in the initial hot rolled AZ31B alloy sheets and gave rise to a more uniform strain distribution in the outer tension region of the bending samples, in which the tensile deformation was accommodated by the equally distributed {$ 10\bar{1} 2$} tension twinning and basal slip. Consequently, the bimodal microstructure, shifted basal texture and the modification of DBs were responsible for the significant enhancement in the bendability of the AZ31 alloys.
    • loading
    • [1]
      Z.R. Zeng, Y.M. Zhu, S.W. Xu, et al., Texture evolution during static recrystallization of cold-rolled magnesium alloys, Acta Mater., 105(2016), p. 479. doi: 10.1016/j.actamat.2015.12.045
      [2]
      J.R. Li, A.Y. Zhang, H.C. Pan, et al., Effect of extrusion speed on microstructure and mechanical properties of the Mg–Ca binary alloy, J. Magnes. Alloys, 9(2021), No. 4, p. 1297. doi: 10.1016/j.jma.2020.05.011
      [3]
      G.Z. Kang and H. Li, Review on cyclic plasticity of magnesium alloys: Experiments and constitutive models, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 567. doi: 10.1007/s12613-020-2216-8
      [4]
      Z. Zhang, J.H. Zhang, J. Wang, et al., Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 30. doi: 10.1007/s12613-020-2190-1
      [5]
      Q.S. Yang, B. Jiang, B. Song, et al., The effects of orientation control via tension-compression on microstructural evolution and mechanical behavior of AZ31 Mg alloy sheet, J. Magnes. Alloys, 10(2022), No. 2, p. 411
      [6]
      H.X. Li, S.K. Qin, Y.Z. Ma, et al., Effects of Zn content on the microstructure and the mechanical and corrosion properties of as-cast low-alloyed Mg–Zn–Ca alloys, Int. J. Miner. Metall. Mater., 25(2018), No. 7, p. 800. doi: 10.1007/s12613-018-1628-1
      [7]
      F. Samadpour, G. Faraji, and A. Siahsarani, Processing of AM60 magnesium alloy by hydrostatic cyclic expansion extrusion at elevated temperature as a new severe plastic deformation method, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 669. doi: 10.1007/s12613-019-1921-7
      [8]
      B. Bagheri, M. Abbasi, A. Abdollahzadeh, and A.H. Kokabi, A comparative study between friction stir processing and friction stir vibration processing to develop magnesium surface nanocomposites, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1133. doi: 10.1007/s12613-020-1993-4
      [9]
      V. Badisha, S. Shaik, R. Dumpala, and B.R. Sunil, Developing Mg–Zn surface alloy by friction surface allosying: in vitro degradation studies in simulated body fluids, Int. J. Miner. Metall. Mater., 27(2020), No. 7, p. 962. doi: 10.1007/s12613-020-2053-9
      [10]
      H.B. Liao, M.Y. Zhan, C.B. Li, Z.Q. Ma, and J. Du, Grain refinement of Mg–Al alloys inoculated by MgAl2O4 powder, J. Magnes. Alloys, 9(2021), No. 4, p. 1211. doi: 10.1016/j.jma.2020.04.010
      [11]
      S.M. Fatemi-Varzaneh, A. Zarei-Hanzaki, and J.M. Cabrera, Shear banding phenomenon during severe plastic deformation of an AZ31 magnesium alloy, J. Alloys Compd., 509(2011), No. 9, p. 3806. doi: 10.1016/j.jallcom.2011.01.019
      [12]
      T. Kong, B.J. Kwak, J. Kim, et al., Tailoring strength-ductility balance of caliber-rolled AZ31 Mg alloy through subsequent annealing, J. Magnes. Alloys, 8(2020), No. 1, p. 163. doi: 10.1016/j.jma.2019.11.005
      [13]
      H.L. Kim, J.H. Lee, C.S. Lee, et al., Shear band formation during hot compression of AZ31 Mg alloy sheets, Mater. Sci. Eng. A, 558(2012), p. 431. doi: 10.1016/j.msea.2012.08.023
      [14]
      Y.B. Chun and C.H.J. Davies, Texture effects on development of shear bands in rolled AZ31 alloy, Mater. Sci. Eng. A, 556(2012), p. 253. doi: 10.1016/j.msea.2012.06.083
      [15]
      F.W. Bach, M. Rodman, A. Rossberg, B.A. Behrens, and G. Kurzare, Macroscopic damage by the formation of shear bands during the rolling and deep drawing of magnesium sheets, JOM, 57(2005), No. 5, p. 57. doi: 10.1007/s11837-005-0098-x
      [16]
      R. Alizadeh, R. Mahmudi, A.H.W. Ngan, and T.G. Langdon, Microstructural evolution during hot shear deformation of an extruded fine-grained Mg–Gd–Y–Zr alloy, J. Mater. Sci., 52(2017), No. 13, p. 7843. doi: 10.1007/s10853-017-1031-8
      [17]
      D.K. Guan, W.M. Rainforth, J.H. Gao, et al., Individual effect of recrystallisation nucleation sites on texture weakening in a magnesium alloy: Part 1- double twins, Acta Mater., 135(2017), p. 14. doi: 10.1016/j.actamat.2017.06.015
      [18]
      Q.S. Yang, B. Jiang, B. Song, J.Y. Zhang, and F.S. Pan, Improving strength and formability of rolled AZ31 sheet by two-step twinning deformation, JOM, 72(2020), No. 7, p. 2551. doi: 10.1007/s11837-019-03894-x
      [19]
      Q.S. Yang, B. Jiang, B. Song, et al., Mechanical behavior and microstructure evolution for extruded AZ31 sheet under side direction strain, Prog. Nat. Sci. Mater. Int., 30(2020), No. 2, p. 270. doi: 10.1016/j.pnsc.2020.02.002
      [20]
      J.J. He, Y. Mao, S.L. Lu, et al., Texture optimization on Mg sheets by preparing soft orientations of extension twinning for rolling, Mater. Sci. Eng. A, 760(2019), p. 174. doi: 10.1016/j.msea.2019.06.007
      [21]
      J.J. He, Y. Mao, Y.J. Fu, et al., Improving the room-temperature formability of Mg–3Al–1Zn alloy sheet by introducing an orthogonal four-peak texture, J. Alloys Compd., 797(2019), p. 443. doi: 10.1016/j.jallcom.2019.05.087
      [22]
      Y.J. Kim, J.U. Lee, Y.M. Kim, and S.H. Park, Microstructural evolution and grain growth mechanism of pre-twinned magnesium alloy during annealing, J. Magnes. Alloys, 9(2021), No. 4, p. 1233. doi: 10.1016/j.jma.2020.11.015
      [23]
      C. He, B. Jiang, Q.H. Wang, et al., Effect of precompression and subsequent annealing on the texture evolution and bendability of Mg–Gd binary alloy, Mater. Sci. Eng. A, 799(2021), art. No. 140290. doi: 10.1016/j.msea.2020.140290
      [24]
      Z.Z. Jin, M. Zha, Z.Y. Yu, et al., Wang, Exploring the Hall-Petch relation and strengthening mechanism of bimodal-grained Mg–Al–Zn alloys, J. Alloys Compd., 833(2020), art. No. 155004. doi: 10.1016/j.jallcom.2020.155004
      [25]
      S.H. Park, S.H. Kim, Y.M. Kim, and B.S. You, Improving mechanical properties of extruded Mg–Al alloy with a bimodal grain structure through alloying addition, J. Alloys Compd., 646(2015), p. 932. doi: 10.1016/j.jallcom.2015.06.034
      [26]
      H. Zhang, H.Y. Wang, J.G. Wang, et al., The synergy effect of fine and coarse grains on enhanced ductility of bimodal-structured Mg alloys, J. Alloys Compd., 780(2019), p. 312. doi: 10.1016/j.jallcom.2018.11.229
      [27]
      B.J. Wang, D.K. Xu, L.Y. Sheng, E.H. Han, and J. Sun, Deformation and fracture mechanisms of an annealing-tailored “bimodal” grain-structured Mg alloy, J. Mater. Sci. Technol., 35(2019), No. 11, p. 2423. doi: 10.1016/j.jmst.2019.06.008
      [28]
      M. Zha, H.M. Zhang, Z.Y. Yu, et al., Bimodal microstructure - A feasible strategy for high-strength and ductile metallic materials, J. Mater. Sci. Technol., 34(2018), No. 2, p. 257. doi: 10.1016/j.jmst.2017.11.018
      [29]
      H.M. Zhang, X.M. Cheng, M. Zha, et al., A superplastic bimodal grain-structured Mg–9Al–1Zn alloy processed by short-process hard-plate rolling, Materialia, 8(2019), art. No. 100443. doi: 10.1016/j.mtla.2019.100443
      [30]
      W. Rong, Y. Zhang, Y.J. Wu, et al., The role of bimodal-grained structure in strengthening tensile strength and decreasing yield asymmetry of Mg–Gd–Zn–Zr alloys, Mater. Sci. Eng. A, 740-741(2019), p. 262. doi: 10.1016/j.msea.2017.09.125
      [31]
      Y.C. Huang, B.Q. Xiao, J.F. Song, et al., Effect of tension on edge crack of on-line heating rolled AZ31B magnesium alloy sheet, J. Mater. Res. Technol., 9(2020), No. 2, p. 1988. doi: 10.1016/j.jmrt.2019.12.031
      [32]
      E.P. Silva, R.H. Buzolin, F. Marques, et al., Effect of Ce-base mischmetal addition on the microstructure and mechanical properties of hot-rolled ZK60 alloy, J. Magnes. Alloys, 9(2021), No. 3, p. 995. doi: 10.1016/j.jma.2020.09.018
      [33]
      Y.S. Kim and W.J. Kim, Microstructure and superplasticity of the as-cast Mg–9Al–1Zn magnesium alloy after high-ratio differential speed rolling, Mater. Sci. Eng. A, 677(2016), p. 332. doi: 10.1016/j.msea.2016.09.063
      [34]
      Y.P. Wang, F. Li, Y. Wang, X.W. Li, and W.W. Fang, Effect of extrusion ratio on the microstructure and texture evolution of AZ31 magnesium alloy by the staggered extrusion (SE), J. Magnes. Alloys, 8(2020), No. 4, p. 1304. doi: 10.1016/j.jma.2020.05.013
      [35]
      S.W. Lee, S.H. Kim, and S.H. Park, Microstructural characteristics of AZ31 alloys rolled at room and cryogenic temperatures and their variation during annealing, J. Magnes. Alloys, 8(2020), No. 2, p. 537. doi: 10.1016/j.jma.2020.03.003
      [36]
      J.H. Lee, S.H. Park, S.G. Hong, J.W. Won, and C.S. Lee, Abnormal texture evolution of rolled Mg–3Al–1Zn alloy containing initial{10–12}twins, Scripta Mater., 99(2015), p. 21. doi: 10.1016/j.scriptamat.2014.11.017
      [37]
      S.H. Park, S.G. Hong, J.H. Lee, and Y.H. Huh, Texture evolution of rolled Mg–3Al–1Zn alloy undergoing a{10–12}twinning dominant strain path change, J. Alloys Compd., 646(2015), p. 573. doi: 10.1016/j.jallcom.2015.05.194
      [38]
      S.W. Xu, K. Oh-ishi, S. Kamado, and T. Homma, Twins, recrystallization and texture evolution of a Mg–5.99Zn–1.76Ca–0.35Mn (wt.%) alloy during indirect extrusion process, Scripta Mater., 65(2011), No. 10, p. 875. doi: 10.1016/j.scriptamat.2011.07.053
      [39]
      N. Stanford, D. Atwell, and M.R. Barnett, The effect of Gd on the recrystallisation, texture and deformation behaviour of magnesium-based alloys, Acta Mater., 58(2010), No. 20, p. 6773. doi: 10.1016/j.actamat.2010.09.003
      [40]
      K. Atik and M. Efe, Twinning-induced shear banding and its control in rolling of magnesium, Mater. Sci. Eng. A, 725(2018), p. 267. doi: 10.1016/j.msea.2018.03.121
      [41]
      I. Basu, T. Al-Samman, and G. Gottstein, Shear band-related recrystallization and grain growth in two rolled magnesium-rare earth alloys, Mater. Sci. Eng. A, 579(2013), p. 50. doi: 10.1016/j.msea.2013.04.076
      [42]
      I. Basu and T. Al-Samman, Competitive twinning behavior in magnesium and its impact on recrystallization and texture formation, Mater. Sci. Eng. A, 707(2017), p. 232. doi: 10.1016/j.msea.2017.09.053
      [43]
      A. Levinson, R.K. Mishra, R.D. Doherty, and S.R. Kalidindi, Influence of deformation twinning on static annealing of AZ31 Mg alloy, Acta Mater., 61(2013), No. 16, p. 5966. doi: 10.1016/j.actamat.2013.06.037
      [44]
      Y.J. Kim, J.U. Lee, S.H. Kim, Y.M. Kim, and S.H. Park, Grain size effect on twinning and annealing behaviors of rolled magnesium alloy with bimodal structure, Mater. Sci. Eng. A, 754(2019), p. 38. doi: 10.1016/j.msea.2019.03.041
      [45]
      B. Lei, B. Jiang, H.B. Yang, et al., Effect of Nd addition on the microstructure and mechanical properties of extruded Mg–Gd–Zr alloy, Mater. Sci. Eng. A, 816(2021), art. No. 141320. doi: 10.1016/j.msea.2021.141320
      [46]
      J.Y. Lee, Y.S. Yun, B.C. Suh, et al., Comparison of static recrystallization behavior in hot rolled Mg–3Al–1Zn and Mg–3Zn–0.5Ca sheets, J. Alloys Compd., 589(2014), p. 240. doi: 10.1016/j.jallcom.2013.11.210
      [47]
      B. Song, N. Guo, T.T. Liu, and Q.S. Yang, Improvement of formability and mechanical properties of magnesium alloys via pre-twinning: A review, Mater. Des., 62(2014), p. 352. doi: 10.1016/j.matdes.2014.05.034
      [48]
      X.D. Liu, J. Chen, X.L. Liu, et al., Effect of twin boundary-dislocation and twin boundary-solute atom interaction on detwinning of Mg–2Gd–2Y–0.3Zr alloy, J. Alloys Compd., 770(2019), p. 483. doi: 10.1016/j.jallcom.2018.08.171
      [49]
      W.K. Wang, W.C. Zhang, W.Z. Chen, G.R. Cui, and E.D. Wang, Effect of initial texture on the bending behavior, microstructure and texture evolution of ZK60 magnesium alloy during the bending process, J. Alloys Compd., 737(2018), p. 505. doi: 10.1016/j.jallcom.2017.12.084
      [50]
      L.F. Wang, G.S. Huang, H. Zhang, Y.X. Wang, and L. Yin, Evolution of springback and neutral layer of AZ31B magnesium alloy V-bending under warm forming conditions, J. Mater. Process. Technol., 213(2013), No. 6, p. 844. doi: 10.1016/j.jmatprotec.2013.01.005
      [51]
      J. Singh, M.S. Kim, and S.H. Choi, The effect of initial texture on micromechanical deformation behaviors in Mg alloys under a mini-V-bending test, Int. J. Plast., 117(2019), p. 33. doi: 10.1016/j.ijplas.2018.01.008

    Catalog


    • /

      返回文章
      返回