留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 1
Jan.  2023

图(8)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  801
  • HTML全文浏览量:  349
  • PDF下载量:  58
  • 被引次数: 0
Hui Liu, Yanhui Zhao, Chuanshi Sui, Yi Li, Muhammad Ali Siddiqui, Susu Li, Tong Li, Shuyuan Zhang, Hai Wang, Tao Jin, Ling Ren, Ke Yang, and Ning Zhang, Effect of N2 partial pressure on comprehensive properties of antibacterial TiN/Cu nanocomposite coating, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 131-143. https://doi.org/10.1007/s12613-021-2387-y
Cite this article as:
Hui Liu, Yanhui Zhao, Chuanshi Sui, Yi Li, Muhammad Ali Siddiqui, Susu Li, Tong Li, Shuyuan Zhang, Hai Wang, Tao Jin, Ling Ren, Ke Yang, and Ning Zhang, Effect of N2 partial pressure on comprehensive properties of antibacterial TiN/Cu nanocomposite coating, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 131-143. https://doi.org/10.1007/s12613-021-2387-y
引用本文 PDF XML SpringerLink
研究论文

N2分压对抗菌TiN/Cu纳米复合涂层的综合性能影响

    * 共同第一作者
  • 通讯作者:

    张宁    E-mail: Zhangning_513@sohu.com

文章亮点

  • (1) 系统地研究了N2分压对TiN/Cu纳米复合涂层的围观组织的影响。
  • (2) 开发了耐磨性、耐蚀性、抗菌性、生物相容性能优异的TiN/Cu-1.5涂层。
  • (3) 总结并阐明了N2分压对TiN/Cu涂层的综合性能影响机制。
  • 人体组织对植入物磨损碎片和腐蚀产物产生的异物反应以及细菌感染是导致植入物失败的主要因素。为了解决这些问题,本文采用电弧离子镀系统通过不同N2分压的工艺参数设置,在304不锈钢上制备获得一系列抗菌TiN/Cu纳米复合涂层沉积,分别命名为TiN/Cu-x(x = 0.5,1.0,1.5 Pa)。X射线衍射分析、能量色散X射线光谱和扫描电镜分析结果表明,N2分压决定了TiN/Cu纳米复合涂层的Cu含量、表面缺陷和微晶尺寸,进一步影响了其综合能力。TiN/Cu涂层的硬度和耐磨性随着微晶尺寸的增加而增强。在表面缺陷、微晶尺寸和铜含量的协同作用下,TiN/Cu-1.0和TiN/Cu-1.5涂层具有优异的耐腐蚀性。此外,生物试验证明,所有TiN/Cu涂层均无细胞毒性,抗菌能力强。其中,TiN/Cu-1.5涂层显著促进了细胞增殖,有望成为一种新型抗菌、耐腐蚀、耐磨的医疗植入物表面涂层。
  • Research Article

    Effect of N2 partial pressure on comprehensive properties of antibacterial TiN/Cu nanocomposite coating

    + Author Affiliations
    • Foreign body reactions to the wear debris and corrosion products from the implants, and bacterial infections are the main factors leading to the implant failures. In order to resolve these problems, the antibacterial TiN/Cu nanocomposite coatings with various N2 partial pressures were deposited on 304 stainless steels (SS) using an arc ion plating (AIP) system, named TiN/Cu-x (x = 0.5, 1.0, 1.5 Pa). The results of X-ray diffraction analysis, energy-dispersive X-ray spectroscopy, and scanning electron microscopy showed that the N2 partial pressures determined the Cu contents, surface defects, and crystallite sizes of TiN/Cu nanocomposite coatings, which further influenced the comprehensive abilities. And the hardness and wear resistances of TiN/Cu coatings were enhanced with increase of the crystallite sizes. Under the co-actions of surface defects, crystallite sizes, and Cu content, TiN/Cu-1.0 and TiN/Cu-1.5 coatings possessed excellent corrosion resistance. Besides, the biological tests proved that all the TiN/Cu coatings showed no cytotoxicity with strong antibacterial ability. Among them, TiN/Cu-1.5 coating significantly promoted the cell proliferation, which is expected to be a novel antibacterial, corrosion-resistant, and wear-resistant coating on the surfaces of medical implants.
    • loading
    • [1]
      D.R. Bijukumar, S. Salunkhe, G.X. Zheng, et al., Wear particles induce a new macrophage phenotype with the potential to accelerate material corrosion within total hip replacement interfaces, Acta Biomater., 101(2020), p. 586. doi: 10.1016/j.actbio.2019.10.039
      [2]
      C.R. Arciola, D. Campoccia, and L. Montanaro, Implant infections: Adhesion, biofilm formation and immune evasion, Nat. Rev. Microbiol., 16(2018), No. 7, p. 397. doi: 10.1038/s41579-018-0019-y
      [3]
      M. Annunziata, A. Oliva, M.A. Basile, et al., The effects of titanium nitride-coating on the topographic and biological features of TPS implant surfaces, J. Dent., 39(2011), No. 11, p. 720. doi: 10.1016/j.jdent.2011.08.003
      [4]
      R. Mengel, C. Meer, and L. Flores-de-Jacoby, The treatment of uncoated and titanium nitride-coated abutments with different instruments, Int. J. Oral Maxillofac. Implants, 19(2004), No. 2, p. 232.
      [5]
      S.S. Magill, J.R. Edwards, W. Bamberg, et al., Multistate point-prevalence survey of health care-associated infections, N. Engl. J. Med., 370(2014), No. 13, p. 1198. doi: 10.1056/NEJMoa1306801
      [6]
      W. Zimmerli, Clinical presentation and treatment of orthopaedic implant-associated infection, J Intern. Med, 276(2014), No. 2, p. 111. doi: 10.1111/joim.12233
      [7]
      C.T. Wu, Y.H. Zhou, M.C. Xu, et al., Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity, Biomaterials, 34(2013), No. 2, p. 422. doi: 10.1016/j.biomaterials.2012.09.066
      [8]
      D. Campoccia, L. Montanaro, and C.R. Arciola, A review of the clinical implications of anti-infective biomaterials and infection-resistant surfaces, Biomaterials, 34(2013), No. 33, p. 8018. doi: 10.1016/j.biomaterials.2013.07.048
      [9]
      E.L. Zhang, X.T. Zhao, J.L. Hu, et al., Antibacterial metals and alloys for potential biomedical implants, Bioact. Mater., 6(2021), No. 8, p. 2569. doi: 10.1016/j.bioactmat.2021.01.030
      [10]
      J. Musil and J. Vlček, Magnetron sputtering of hard nanocomposite coatings and their properties, Surf. Coat. Technol., 142-144(2001), p. 557. doi: 10.1016/S0257-8972(01)01139-2
      [11]
      N.M. Lowe, W.D. Fraser, and M.J. Jackson, Is there a potential therapeutic value of copper and zinc for osteoporosis? Proc. Nutr. Soc., 61(2002), No. 2, p. 181. doi: 10.1079/PNS2002154
      [12]
      C. Gérard, L.J. Bordeleau, J. Barralet, and C.J. Doillon, The stimulation of angiogenesis and collagen deposition by copper, Biomaterials, 31(2010), No. 5, p. 824. doi: 10.1016/j.biomaterials.2009.10.009
      [13]
      H.F. Wang, X.F. Shu, M.Q. Guo, et al., Structural, tribological and antibacterial activities of Ti–Cu–N hard coatings prepared by plasma surface alloying technique, Surf. Coat. Technol., 235(2013), p. 235. doi: 10.1016/j.surfcoat.2013.07.038
      [14]
      X.Y. Luo, D.L. Ma, P.P. Jing, et al., In vitro analysis of cell compatibility of TiCuN films with different Cu contents, Surf. Coat. Technol., 408(2021), art. No. 126790. doi: 10.1016/j.surfcoat.2020.126790
      [15]
      H. Liu, X.Y. Zhang, S.J. Jin, Y.H. Zhao, L. Ren, and K. Yang, Effect of copper-doped titanium nitride coating on angiogenesis, Mater. Lett., 269(2020), art. No. 127634. doi: 10.1016/j.matlet.2020.127634
      [16]
      Y.H. Zhao, X.Q. Wang, J.Q. Xiao, B.H. Yu, and F.Q. Li, Ti–Cu–N hard nanocomposite films prepared by pulse biased arc ion plating, Appl. Surf. Sci., 258(2011), No. 1, p. 370. doi: 10.1016/j.apsusc.2011.09.038
      [17]
      S.M. Xie, M.J. Dai, S.S. Lin, et al., Effect of bias voltage on the oxidation resistance of NiCoCrAlYTa coatings prepared by arc ion plating, Corros. Sci., 147(2019), p. 330. doi: 10.1016/j.corsci.2018.11.030
      [18]
      S.S. Zhao, Y.H. Zhao, L.S. Cheng, et al., Effects of substrate pulse bias duty cycle on the microstructure and mechanical properties of Ti–Cu–N films deposited by magnetic field-enhanced arc ion plating, Acta Metall. Sin. Engl. Lett., 30(2017), No. 2, p. 176. doi: 10.1007/s40195-017-0536-0
      [19]
      M.N. Yoozbashi and S. Yazdani, XRD and TEM study of bainitic ferrite plate thickness in nanostructured, carbide free bainitic steels, Mater. Chem. Phys., 160(2015), p. 148. doi: 10.1016/j.matchemphys.2015.03.071
      [20]
      F. Rupp, R.A. Gittens, L. Scheideler, et al., A review on the wettability of dental implant surfaces I: Theoretical and experimental aspects, Acta Biomater., 10(2014), No. 7, p. 2894. doi: 10.1016/j.actbio.2014.02.040
      [21]
      H.G. Kim, S.H. Ahn, J.G. Kim, S.J. Park, and K.R. Lee, Corrosion performance of diamond-like carbon (DLC)-coated Ti alloy in the simulated body fluid environment, Diam. Relat. Mater., 14(2005), No. 1, p. 35. doi: 10.1016/j.diamond.2004.06.034
      [22]
      H. Liu, R. Liu, I. Ullah, et al., Rough surface of copper-bearing titanium alloy with multifunctions of osteogenic ability and antibacterial activity, J. Mater. Sci. Technol., 48(2020), p. 130. doi: 10.1016/j.jmst.2019.12.019
      [23]
      A. Anders, A structure zone diagram including plasma-based deposition and ion etching, Thin Solid Films, 518(2010), No. 15, p. 4087. doi: 10.1016/j.tsf.2009.10.145
      [24]
      Y.H. Zhao, S.S. Zhao, L. Ren, et al., Effect of substrate pulse bias voltage on the microstructure and mechanical and wear-resistant properties of TiN/Cu nanocomposite films, Rare Met. Mater. Eng., 47(2018), No. 11, p. 3284. doi: 10.1016/S1875-5372(18)30233-9
      [25]
      J. Bujak, J. Walkowicz, and J. Kusiński, Influence of the nitrogen pressure on the structure and properties of (Ti,Al)N coatings deposited by cathodic vacuum arc PVD process, Surf. Coat. Technol., 180-181(2004), p. 150. doi: 10.1016/j.surfcoat.2003.10.058
      [26]
      P. Balashabadi, M. Larijani, H. Seyedi, and E. Jafari-Khamse, Effect of Cu content on TiN–Cu nanocomposite film properties: Structural and hardness studies, J. Nanostructures, 3(2013), No. 2, p. 237. doi: 10.7508/JNS.2013.02.012
      [27]
      M.A. Hussein, N.K. Ankah, A.M. Kumar, et al., Mechanical, biocorrosion, and antibacterial properties of nanocrystalline TiN coating for orthopedic applications, Ceram. Int., 46(2020), No. 11, p. 18573. doi: 10.1016/j.ceramint.2020.04.164
      [28]
      B. Warcholinski, A. Gilewicz, P. Myslinski, et al., Effect of nitrogen pressure and substrate bias voltage on the properties of Al–Cr–B–N coatings deposited using cathodic arc evaporation, Tribol. Int., 154(2021), art. No. 106744. doi: 10.1016/j.triboint.2020.106744
      [29]
      C. Chokwatvikul, S. Larpkiattaworn, S. Surinphong, C. Busabok, and P. Termsuksawad, Effect of nitrogen partial pressure on characteristic and mechanical properties of hard coating TiAlN Film, J. Met. Mater. Miner., 21(2011), No. 1, p. 115.
      [30]
      R.A. Gittens, L. Scheideler, F. Rupp, et al., A review on the wettability of dental implant surfaces II: Biological and clinical aspects, Acta Biomater., 10(2014), No. 7, p. 2907. doi: 10.1016/j.actbio.2014.03.032
      [31]
      M.M. Bao, X.Y. Wang, L. Yang, G.W. Qin, and E.L. Zhang, Tribocorrosion behavior of Ti–Cu alloy in hank’s solution for biomedical application, J. Bio- Tribo-Corros., 4(2018), No. 2, art. No. 29. doi: 10.1007/s40735-018-0142-3
      [32]
      B. Abdallah, M. Naddaf, and M. A-Kharroub, Structural, mechanical, electrical and wetting properties of ZrNx films deposited by Ar/N2 vacuum arc discharge: Effect of nitrogen partial pressure, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms, 298(2013), p. 55. doi: 10.1016/j.nimb.2013.01.003
      [33]
      S.C. Tjong and H. Chen, Nanocrystalline materials and coatings, Mater. Sci. Eng. R Rep., 45(2004), No. 1-2, p. 1. doi: 10.1016/j.mser.2004.07.001
      [34]
      Z.B. Qi, P. Sun, F.P. Zhu, et al., The inverse Hall–Petch effect in nanocrystalline ZrN coatings, Surf. Coat. Technol., 205(2011), No. 12, p. 3692. doi: 10.1016/j.surfcoat.2011.01.021
      [35]
      W.J. Chou, G.P. Yu, and J.H. Huang, Deposition of TiN thin films on Si(100) by HCD ion plating, Surf. Coat. Technol., 140(2001), No. 3, p. 206. doi: 10.1016/S0257-8972(01)01120-3
      [36]
      C. Peng, Y. Zhao, S. Jin, et al., Antibacterial TiCu/TiCuN multilayer films with good corrosion resistance deposited by axial magnetic field-enhanced arc ion plating, ACS Appl. Mater. Interfaces, 11(2019), No. 1, p. 125. doi: 10.1021/acsami.8b14038
      [37]
      R.M. Souto and H. Alanyali, Electrochemical characteristics of steel coated with TiN and TiAlN coatings, Corros. Sci., 42(2000), No. 12, p. 2201. doi: 10.1016/S0010-938X(00)00057-3
      [38]
      K. Chojnacka and M. Mikulewicz, Modelling of Cr and Ni ions release during orthodontic treatment: in vitro and in vivo methods, Environ. Toxicol. Pharmacol., 38(2014), No. 3, p. 932. doi: 10.1016/j.etap.2014.10.014
      [39]
      C.L. He, J.L. Zhang, J.M. Wang, et al., Effect of structural defects on corrosion initiation of TiN nanocrystalline films, Appl. Surf. Sci., 276(2013), p. 667. doi: 10.1016/j.apsusc.2013.03.151
      [40]
      X.H. Bai, X.L. Shi, L.L. Xu, et al., Effects of hydrothermal treatment on physicochemical and anticorrosion properties of titanium nitride coating on pure titanium, Appl. Surf. Sci., 507(2020), art. No. 145030. doi: 10.1016/j.apsusc.2019.145030
      [41]
      C.L. Liu, G.Q. Lin, D.Z. Yang, and M. Qi, In vitro corrosion behavior of multilayered Ti/TiN coating on biomedical AISI 316L stainless steel, Surf. Coat. Technol., 200(2006), No. 12-13, p. 4011. doi: 10.1016/j.surfcoat.2004.12.015
      [42]
      B. Subramanian and M. Jayachandran, Electrochemical corrosion behavior of magnetron sputtered TiN coated steel in simulated bodily fluid and its hemocompatibility, Mater. Lett., 62(2008), No. 10-11, p. 1727. doi: 10.1016/j.matlet.2007.09.072
      [43]
      J.L. Zhao, D.K. Xu, M.B. Shahzad, et al., Effect of surface passivation on corrosion resistance and antibacterial properties of Cu-bearing 316L stainless steel, Appl. Surf. Sci., 386(2016), p. 371. doi: 10.1016/j.apsusc.2016.06.036
      [44]
      R. Liu, Y.L. Tang, L.L. Zeng, et al., In vitro and in vivo studies of anti-bacterial copper-bearing titanium alloy for dental application, Dent. Mater., 34(2018), No. 8, p. 1112. doi: 10.1016/j.dental.2018.04.007
      [45]
      K.Q. Li, C. Xia, Y.Q. Qiao, and X.Y. Liu, Dose-response relationships between copper and its biocompatibility/antibacterial activities, J. Trace Elem. Med. Biol., 55(2019), p. 127. doi: 10.1016/j.jtemb.2019.06.015

    Catalog


    • /

      返回文章
      返回