留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 1
Jan.  2023

图(8)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  1077
  • HTML全文浏览量:  216
  • PDF下载量:  85
  • 被引次数: 0
Yujiao Wang, Yun Zhang,  and Haitao Jiang, Tension–compression asymmetry and corresponding deformation mechanism in ZA21 magnesium bars with bimodal structure, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 92-103. https://doi.org/10.1007/s12613-021-2388-x
Cite this article as:
Yujiao Wang, Yun Zhang,  and Haitao Jiang, Tension–compression asymmetry and corresponding deformation mechanism in ZA21 magnesium bars with bimodal structure, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 92-103. https://doi.org/10.1007/s12613-021-2388-x
引用本文 PDF XML SpringerLink
研究论文

双峰组织ZA21镁合金棒材的拉–压不对称性及变形机制研究

  • 通讯作者:

    张韵    E-mail: zhangyun@ustb.edu.cn

    江海涛    E-mail: jianght@ustb.edu.cn

文章亮点

  • (1) 制备了具有完全再结晶晶粒且织构特征相同的双峰组织镁合金棒材,研究了其轴向拉-压不对称性。
  • (2) 揭示了拉伸孪晶变体选择的决定性因素。
  • (3) 通过改进的霍尔-佩奇公式提出了双峰组织强化屈服强度的条件。
  • 本文通过挤压及热处理分别制备了两种具有完全再结晶晶粒的ZA21镁合金棒材,分别为晶粒尺寸成大小两种状态分布的双峰组织以及晶粒尺寸均匀的均匀组织,对这两种棒材沿轴向分别进行了拉伸及压缩试验,旨在研究具有双峰组织和均匀组织特征的ZA21镁合金棒材的拉伸−压缩不对称性(拉−压不对称性),并揭示相应变形机制。结果表明,拉伸和压缩状态下双峰组织的屈服强度分别为206.42和140.28 MPa,高于均匀组织在拉伸和压缩状态的屈服强度,分别为183.71和102.86 MPa。变形过程中,拉伸状态下的柱面滑移和拉伸孪生、压缩状态下的基面滑移和拉伸孪生主导了屈服行为,导致了轴向拉−压不对称性。然而,由于拉伸状态下细晶中基面滑移的激活以及压缩状态下细晶对拉伸孪生的抑制作用,相较于均匀组织较高的拉-压不对称性(0.56),双峰组织的拉−压不对称性(0.68)明显降低。变形过程中出现了多种拉伸孪晶,孪晶变体的选择取决于母晶可能激活的六种变体的施密特因子。此外,通过改进的霍尔−佩奇公式,发现双峰组织对屈服的强化作用取决于平均晶粒尺寸以及粗晶和细晶的占比。
  • Research Article

    Tension–compression asymmetry and corresponding deformation mechanism in ZA21 magnesium bars with bimodal structure

    + Author Affiliations
    • We investigated the asymmetric tension–compression (T–C) behavior of ZA21 bars with bimodal and uniform structures through axial tension and compression tests. The results show that the yield strengths of bars having bimodal structure are 206.42 and 140.28 MPa under tension and compression, respectively, which are higher than those of bars having uniform structure with tensile and compressive yield strength of 183.71 and 102.86 MPa, respectively. Prismatic slip and extension twinning under tension and basal slip and extension twinning under compression dominate the yield behavior and induce the T–C asymmetry. However, due to the basal slip activated in fine grains under tension and the inhibition of extension twinning by fine grains under compression, the bimodal structure possesses a lower T–C asymmetry (0.68) compared to the uniform structure (0.56). Multiple extension twins occur during deformation, and the selection of twin variants depends on the Schmid factor of the six variants activated by parent grains. Furthermore, the strengthening effect of the bimodal structure depends on the grain size and the ratio of coarse and fine grains.
    • loading
    • [1]
      T. Homma, N. Kunito, and S. Kamado, Fabrication of extraordinary high-strength magnesium alloy by hot extrusion, Scripta Mater., 61(2009), No. 6, p. 644. doi: 10.1016/j.scriptamat.2009.06.003
      [2]
      K. Oh-ishi, C.L. Mendis, T. Homma, S. Kamado, T. Ohkubo, and K. Hono, Bimodally grained microstructure development during hot extrusion of Mg–2.4 Zn–0.1 Ag–0.1 Ca–0.16 Zr (at.%) alloys, Acta Mater., 57(2009), No. 18, p. 5593. doi: 10.1016/j.actamat.2009.07.057
      [3]
      C. Xu, M.Y. Zheng, S.W. Xu, K. Wu, E.D. Wang, S. Kamado, G.J. Wang, and X.Y. Lv, Ultra high-strength Mg–Gd–Y–Zn–Zr alloy sheets processed by large-strain hot rolling and ageing, Mater. Sci. Eng. A, 547(2012), p. 93. doi: 10.1016/j.msea.2012.03.087
      [4]
      W. Rong, Y. Zhang, Y.J. Wu, Y.L. Chen, M. Sun, J. Chen, and L.M. Peng, The role of bimodal-grained structure in strengthening tensile strength and decreasing yield asymmetry of Mg–Gd–Zn–Zr alloys, Mater. Sci. Eng. A, 740-741(2019), p. 262. doi: 10.1016/j.msea.2017.09.125
      [5]
      D.D. Yin, C.J. Boehlert, L.J. Long, G.H. Huang, H. Zhou, J. Zheng, and Q.D. Wang, Tension-compression asymmetry and the underlying slip/twinning activity in extruded Mg–Y sheets, Int. J. Plast., 136(2021), art. No. 102878. doi: 10.1016/j.ijplas.2020.102878
      [6]
      L. Xiao, G.Y. Yang, H. Qin, J.Q. Ma, and W.Q. Jie, Asymmetric tension-compression mechanical behavior of the as-cast Mg–4.58Zn–2.6Gd–0.16Zr alloy, Mater. Sci. Eng. A, 801(2021), art. No. 140439. doi: 10.1016/j.msea.2020.140439
      [7]
      S.H. Park, J.H. Lee, B.G. Moon, and B.S. You, Tension−compression yield asymmetry in as-cast magnesium alloy, J. Alloys Compd., 617(2014), p. 277. doi: 10.1016/j.jallcom.2014.07.164
      [8]
      B. Raeisinia and S.R. Agnew, Using polycrystal plasticity modeling to determine the effects of grain size and solid solution additions on individual deformation mechanisms in cast Mg alloys, Scripta Mater., 63(2010), No. 7, p. 731. doi: 10.1016/j.scriptamat.2010.03.054
      [9]
      P.J. Wang, L.W. Ma, X.Q. Cheng, and X.G. Li, Influence of grain refinement on the corrosion behavior of metallic materials: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1112. doi: 10.1007/s12613-021-2308-0
      [10]
      S.B. Yi, C.H.J. Davies, H.G. Brokmeier, R.E. Bolmaro, K.U. Kainer, and J. Homeyer, Deformation and texture evolution in AZ31 magnesium alloy during uniaxial loading, Acta Mater., 54(2006), No. 2, p. 549. doi: 10.1016/j.actamat.2005.09.024
      [11]
      C. Kale, S. Turnage, D.Z. Avery, H.E. Kadiri, J.B. Jordon, and K.N. Solanki, Towards dynamic tension–compression asymmetry and relative deformation mechanisms in magnesium, Materialia, 9(2020), art. No. 100543. doi: 10.1016/j.mtla.2019.100543
      [12]
      G.Z. Kang and H. Li, Review on cyclic plasticity of magnesium alloys: Experiments and constitutive models, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 567. doi: 10.1007/s12613-020-2216-8
      [13]
      F.L. Wang, C.D. Barrett, R.J. McCabe, H. El Kadiri, L. Capolungo, and S.R. Agnew, Dislocation induced twin growth and formation of basal stacking faults in{10 $ \bar 1 $2}twins in pure Mg, Acta Mater., 165(2019), p. 471. doi: 10.1016/j.actamat.2018.12.003
      [14]
      S. Kamrani and C. Fleck, Effects of calcium and rare-earth elements on the microstructure and tension–compression yield asymmetry of ZEK100 alloy, Mater. Sci. Eng. A, 618(2014), p. 238. doi: 10.1016/j.msea.2014.09.023
      [15]
      Y.Q. Chi, X.H. Zhou, X.G. Qiao, H.G. Brokmeier, and M.Y. Zheng, Tension-compression asymmetry of extruded Mg–Gd–Y–Zr alloy with a bimodal microstructure studied by in situ synchrotron diffraction, Mater. Des., 170(2019), art. No. 107705. doi: 10.1016/j.matdes.2019.107705
      [16]
      Y.J. Wang, Y. Zhang, and H.T. Jiang, Effect of grain size uniformity and crystallographic orientation on the corrosion behavior of Mg–2Zn–1Al bar, Mater. Charact., 179(2021), art. No. 111374. doi: 10.1016/j.matchar.2021.111374
      [17]
      A. Malik, Y.W. Wang, F. Nazeer, M.A. Khan, M. Sajid, S. Jamal, and M.J. Wang, Deformation behavior of Mg–Zn–Zr magnesium alloy on the basis of macro-texture and fine-grain size under tension and compression loading along various directions, J. Alloys Compd., 858(2021), art. No. 157740. doi: 10.1016/j.jallcom.2020.157740
      [18]
      Y.J. Kim, J.U. Lee, S.H. Kim, Y.M. Kim, and S.H. Park, Grain size effect on twinning and annealing behaviors of rolled magnesium alloy with bimodal structure, Mater. Sci. Eng. A, 754(2019), p. 38. doi: 10.1016/j.msea.2019.03.041
      [19]
      D.W. Brown, S.R. Agnew, M.A.M. Bourke, T.M. Holden, S.C. Vogel, and C.N. Tomé, Internal strain and texture evolution during deformation twinning in magnesium, Mater. Sci. Eng. A, 399(2005), No. 1-2, p. 1. doi: 10.1016/j.msea.2005.02.016
      [20]
      C.L. Lv, T.M. Liu, D.J. Liu, S. Jiang, and W. Zeng, Effect of heat treatment on tension-compression yield asymmetry of AZ80 magnesium alloy, Mater. Des., 33(2012), p. 529. doi: 10.1016/j.matdes.2011.04.060
      [21]
      J. Wang, I.J. Beyerlein, and C.N. Tomé, Reactions of lattice dislocations with grain boundaries in Mg: Implications on the micro scale from atomic-scale calculations, Int. J. Plast., 56(2014), p. 156. doi: 10.1016/j.ijplas.2013.11.009
      [22]
      X. Wan, J. Zhang, X.Y. Mo, and Y. Luo, Effects of pre-strain on twinning behaviors in an extruded Mg−Zr alloy, Mater. Sci. Eng. A, 766(2019), art. No. 138335. doi: 10.1016/j.msea.2019.138335
      [23]
      C.F. Guo, R.L. Xin, C.H. Ding, B. Song, and Q. Liu, Understanding of variant selection and twin patterns in compressed Mg alloy sheets via combined analysis of Schmid factor and strain compatibility factor, Mater. Sci. Eng. A, 609(2014), p. 92. doi: 10.1016/j.msea.2014.04.103
      [24]
      J.R. Luo, A. Godfrey, W. Liu, and Q. Liu, Twinning behavior of a strongly basal textured AZ31 Mg alloy during warm rolling, Acta Mater., 60(2012), No. 5, p. 1986. doi: 10.1016/j.actamat.2011.12.017
      [25]
      2010 62 4 202
      [26]
      J. Jiang, A. Godfrey, W. Liu, and Q. Liu, Identification and analysis of twinning variants during compression of a Mg–Al–Zn alloy, Scripta Mater., 58(2008), No. 2, p. 122. doi: 10.1016/j.scriptamat.2007.09.047
      [27]
      S.G. Hong, S.H. Park, and C.S. Lee, Role of {10-12} twinning characteristics in the deformation behavior of a polycrystalline magnesium alloy, Acta Mater., 58(2010), No. 18, p. 5873. doi: 10.1016/j.actamat.2010.07.002
      [28]
      A. Chapuis, Y.C. Xin, X.J. Zhou, and Q. Liu, {10-12} Twin variants selection mechanisms during twinning, re-twinning and detwinning, Mater. Sci. Eng. A, 612(2014), p. 431. doi: 10.1016/j.msea.2014.06.088
      [29]
      H. El Kadiri, J. Kapil, A.L. Oppedal, L.G. Hector Jr, S.R. Agnew, M. Cherkaoui, and S.C. Vogel, The effect of twin-twin interactions on the nucleation and propagation of {10 $ \bar 1 $2} twinning in magnesium, Acta Mater., 61(2013), No. 10, p. 3549. doi: 10.1016/j.actamat.2013.02.030
      [30]
      M.R. Barnett, M.D. Nave, and A. Ghaderi, Yield point elongation due to twinning in a magnesium alloy, Acta Mater., 60(2012), No. 4, p. 1433. doi: 10.1016/j.actamat.2011.11.022
      [31]
      X.L. Nan, H.Y. Wang, L. Zhang, J.B. Li, and Q.C. Jiang, Calculation of schmid factors in magnesium: Analysis of deformation behaviors, Scripta Mater., 67(2012), No. 5, p. 443. doi: 10.1016/j.scriptamat.2012.05.042
      [32]
      T.Z. Han, G.S. Huang, Y.G. Wang, G.G. Wang, Y.C. Zhao, and F.S. Pan, Enhanced mechanical properties of AZ31 magnesium alloy sheets by continuous bending process after V-bending, Prog. Nat. Sci. Mater. Int., 26(2016), No. 1, p. 97. doi: 10.1016/j.pnsc.2016.01.005
      [33]
      P. Molnár, A. Jäger, and P. Lejček, Twin nucleation at grain boundaries in Mg–3 wt.% Al–1 wt.% Zn alloy processed by equal channel angular pressing, Scripta Mater., 67(2012), No. 5, p. 467. doi: 10.1016/j.scriptamat.2012.06.004
      [34]
      A. Clair, M. Foucault, O. Calonne, Y. Lacroute, L. Markey, M. Salazar, V. Vignal, and E. Finot, Strain mapping near a triple junction in strained Ni-based alloy using EBSD and biaxial nanogauges, Acta Mater., 59(2011), No. 8, p. 3116. doi: 10.1016/j.actamat.2011.01.051
      [35]
      M.N. Zhang, J.H. Wang, Y.P. Zhu, L. Zhang, and P.P. Jin, Ex-situ EBSD analysis of hot deformation behavior and microstructural evolution of Mg–1Al–6Y alloy via uniaxial compression, Mater. Sci. Eng. A, 775(2020), art. No. 138978. doi: 10.1016/j.msea.2020.138978
      [36]
      J.P. Sun, Z.Q. Yang, H. Liu, J. Han, Y.N. Wu, X.R. Zhuo, D. Song, J.H. Jiang, A.B. Ma, and G.S. Wu, Tension-compression asymmetry of the AZ91 magnesium alloy with multi-heterogenous microstructure, Mater. Sci. Eng. A, 759(2019), p. 703. doi: 10.1016/j.msea.2019.05.093
      [37]
      H. Zhang, H.Y. Wang, J.G. Wang, J. Rong, M. Zha, C. Wang, P.K. Ma, and Q.C. Jiang, The synergy effect of fine and coarse grains on enhanced ductility of bimodal-structured Mg alloys, J. Alloys Compd., 780(2019), p. 312. doi: 10.1016/j.jallcom.2018.11.229
      [38]
      Y.B. Chun, M. Battaini, C.H.J. Davies, and S.K. Hwang, Distribution characteristics of in-grain misorientation axes in cold-rolled commercially pure titanium and their correlation with active slip modes, Metall. Mater. Trans. A, 41(2010), No. 13, p. 3473. doi: 10.1007/s11661-010-0410-4
      [39]
      Z. Zhang, J.H. Zhang, J. Wang, Z.H. Li, J.S. Xie, S.J. Liu, K. Guan, and R.Z. Wu, Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 30. doi: 10.1007/s12613-020-2190-1
      [40]
      E.O. Hall, The deformation and ageing of mild steel: III Discussion of results, Proc. Phys. Soc. B, 64(1951), No. 9, p. 747. doi: 10.1088/0370-1301/64/9/303
      [41]
      H.J. Petch, The cleavage strength of polycrystals, J. Iron Steel Inst., 174(1953), No. 19, p. 25.
      [42]
      M.R. Barnett, Z. Keshavarz, and X. Ma, A semianalytical Sachs model for the flow stress of a magnesium alloy, Metall. Mater. Trans. A, 37(2006), No. 7, p. 2283. doi: 10.1007/BF02586147

    Catalog


    • /

      返回文章
      返回