留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 8
Aug.  2022

图(7)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  1538
  • HTML全文浏览量:  276
  • PDF下载量:  50
  • 被引次数: 0
Shuai Zhang, Qianqian Li, Hongcan Chen, Qun Luo, and Qian Li, Icosahedral quasicrystal structure of the Mg40Zn55Nd5 phase and its thermodynamic stability, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1543-1550. https://doi.org/10.1007/s12613-021-2391-2
Cite this article as:
Shuai Zhang, Qianqian Li, Hongcan Chen, Qun Luo, and Qian Li, Icosahedral quasicrystal structure of the Mg40Zn55Nd5 phase and its thermodynamic stability, Int. J. Miner. Metall. Mater., 29(2022), No. 8, pp. 1543-1550. https://doi.org/10.1007/s12613-021-2391-2
引用本文 PDF XML SpringerLink
研究论文

二十面体准晶相Mg40Zn55Nd5的结构及热力学稳定性

  • 通讯作者:

    罗群    E-mail: qunluo@shu.edu.cn

    李谦    E-mail: cquliqian@cqu.edu.cn

文章亮点

  • (1) 解析了Mg40Zn55Nd5准晶的晶体结构(2) 提出了Mg–Zn–Nd体系中Mg40Zn55Nd5准晶形成的成分范围(3) 阐明了亚稳相Mg40Zn55Nd5准晶的转变机理
  • 准晶相(I相)具有硬度高且与镁基体界面能低的优点,是一种理想的增强相。在Mg–Zn–Nd体系中,通过常规铸造方法即可制备出球状准晶相,其弥散分布的方式有利于提高镁合金的力学性能。但是,关于Mg–Zn–Nd体系准晶相的稳定性、晶体结构、形成条件和转变路径尚不明确,限制了准晶增强镁合金的设计与应用。本文采用高角度环形暗场扫描透射电子显微镜研究了Mg40Zn55Nd5准晶的晶体结构,通过差示扫描量热法和退火实验研究了Mg–Zn–Nd体系准晶相的稳定存在的条件和转变过程。结果表明,铸态合金中的准晶呈云朵状,具有5次、4次、3次和2次对称轴,Nd原子沿5次轴形成边长为0.3 nm和0.8 nm的五边形,沿其它轴呈直线排列。Mg或Zn原子沿3次轴和2次轴形成边长为0.3 nm的六边形。Mg–Zn–Nd体系中的准晶是一种亚稳相,当温度高于300°C时,Mg40Zn55Nd5准晶分解为稳定的三元相Mg35Zn60Nd5、二元相MgZn和α-Mg。
  • Research Article

    Icosahedral quasicrystal structure of the Mg40Zn55Nd5 phase and its thermodynamic stability

    + Author Affiliations
    • The quasicrystal phase is beneficial to increasing the strength of magnesium alloys. However, its complicated structure and unclear phase relations impede the design of alloys with good mechanical properties. In this paper, the Mg40Zn55Nd5 icosahedral quasicrystal (I-phase) structure is discovered in an as-cast Mg–58Zn–4Nd alloy by atomic resolution high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM). A cloud-like morphology is observed with Mg41.6Zn55.0Nd3.4 composition. The selected area electronic diffraction (SAED) analysis shows that the icosahedral quasicrystal structure has 5-fold, 4-fold, 3-fold, and 2-fold symmetry zone axes. The thermodynamic stability of the icosahedral quasicrystal is investigated by differential scanning calorimetry (DSC) in the annealed alloys. When annealed above 300°C, the Mg40Zn55Nd5 quasicrystal is found to decompose into a stable ternary phase Mg35Zn60Nd5, a binary phase MgZn, and α-Mg, suggesting that the quasicrystal is a metastable phase in the Mg–Zn–Nd system.
    • loading
    • [1]
      Y.Z. Ma, C.L. Yang, Y.J. Liu, F.S. Yuan, S.S. Liang, H.X. Li, and J.S. Zhang, Microstructure, mechanical, and corrosion properties of extruded low-alloyed Mg–xZn–0.2Ca alloys, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1274. doi: 10.1007/s12613-019-1860-3
      [2]
      N.A. Ali and M. Ismail, Advanced hydrogen storage of the Mg–Na–Al system: A review, J. Magnes. Alloys, 9(2021), No. 4, p. 1111. doi: 10.1016/j.jma.2021.03.031
      [3]
      Q. Li, X. Lin, Q. Luo, Y.A. Chen, J.F. Wang, B. Jiang, and F.S. Pan, Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 32. doi: 10.1007/s12613-021-2337-8
      [4]
      Y. Li, Y. Jiang, B. Liu, Q. Luo, B. Hu, and Q. Li, Understanding grain refining and anti Si-poisoning effect in Al–10Si/Al–5Nb–B system, J. Mater. Sci. Technol., 65(2021), p. 190. doi: 10.1016/j.jmst.2020.04.075
      [5]
      J.L. Su, J. Teng, Z.L. Xu, and Y. Li, Biodegradable magnesium-matrix composites: A review, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 724. doi: 10.1007/s12613-020-1987-2
      [6]
      H. Elkholy, H. Othman, I. Hager, M. Ibrahim, and D. de Ligny, Thermal and optical properties of binary magnesium tellurite glasses and their link to the glass structure, J. Alloys Compd., 823(2020), art. No. 153781. doi: 10.1016/j.jallcom.2020.153781
      [7]
      J.F. Song, J. She, D.L. Chen, and F.S. Pan, Latest research advances on magnesium and magnesium alloys worldwide, J. Magnes. Alloys, 8(2020), No. 1, p. 1. doi: 10.1016/j.jma.2020.02.003
      [8]
      Y.C. Zhou, Q. Luo, B. Jiang, Q. Li, and F.S. Pan, Strength-ductility synergy in Mg98.3Y1.3Ni0.4 alloy processed by high temperature homogenization and rolling, Scripta Mater., 208(2022), art. No. 114345. doi: 10.1016/j.scriptamat.2021.114345
      [9]
      W.Q. Tang, J.Y. Lee, H.M. Wang, D. Steglich, D.Y. Li, Y.H. Peng, and P.D. Wu, Unloading behaviors of the rare-earth magnesium alloy ZE10 sheet, J. Magnes. Alloys, 9(2021), No. 3, p. 927. doi: 10.1016/j.jma.2020.02.023
      [10]
      T.C. Xie, H. Shi, H.B. Wang, Q. Luo, Q. Li, and K.C. Chou, Thermodynamic prediction of thermal diffusivity and thermal conductivity in Mg–Zn–La/Ce system, J. Mater. Sci. Technol., 97(2022), p. 147. doi: 10.1016/j.jmst.2021.04.044
      [11]
      M. Gao, Z. Ma, I.P. Etim, L.L. Tan, and K. Yang, Microstructure, mechanical and corrosion properties of Mg–Zn–Nd alloy with different accumulative area reduction after room-temperature drawing, Rare Met., 40(2021), No. 4, p. 897. doi: 10.1007/s12598-020-01460-y
      [12]
      H.J. Si, Y.X. Jiang, Y. Tang, and L.J. Zhang, Stable and metastable phase equilibria in binary Mg–Gd system: A comprehensive understanding aided by CALPHAD modeling, J. Magnes. Alloys, 7(2019), No. 3, p. 501. doi: 10.1016/j.jma.2019.04.006
      [13]
      Y.L. Guo, B. Liu, W. Xie, Q. Luo, and Q. Li, Anti-phase boundary energy of β series precipitates in Mg–Y–Nd system, Scripta Mater., 193(2021), p. 127. doi: 10.1016/j.scriptamat.2020.11.004
      [14]
      L. Li, D.J. Li, X.Q. Zeng, A.A. Luo, B. Hu, A.K. Sachdev, L.L. Gu, and W.J. Ding, Microstructural evolution of Mg–Al–Re alloy reinforced with alumina fibers, J. Magnes. Alloys, 8(2020), No. 3, p. 565. doi: 10.1016/j.jma.2019.07.012
      [15]
      H. Zengin and Y. Turen, Effect of Y addition on microstructure and corrosion behavior of extruded Mg–Zn–Nd–Zr alloy, J. Magnes. Alloys, 8(2020), No. 3, p. 640. doi: 10.1016/j.jma.2020.06.004
      [16]
      Q. Li, X.D. Peng, and F.S. Pan, Magnesium-based materials for energy conversion and storage, J. Magnes. Alloys, 9(2021), No. 6, p. 2223. doi: 10.1016/j.jma.2021.11.003
      [17]
      Z. Zhang, J.H. Zhang, J. Wang, Z.H. Li, J.S. Xie, S.J. Liu, K. Guan, and R.Z. Wu, Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 30. doi: 10.1007/s12613-020-2190-1
      [18]
      Y.B. Wang, S.S. Jia, M.G. Wei, L.M. Peng, Y.J. Wu, and X.T. Liu, Research progress on solidification structure of alloys by synchrotron X-ray radiography: A review, J. Magnes. Alloys, 8(2020), No. 2, p. 396. doi: 10.1016/j.jma.2019.08.003
      [19]
      Q. Li, Y.F. Lu, Q. Luo, X.H. Yang, Y. Yang, J. Tan, Z.H. Dong, J. Dang, J.B. Li, Y. Chen, B. Jiang, S.H. Sun, and F.S. Pan, Thermodynamics and kinetics of hydriding and dehydriding reactions in Mg-based hydrogen storage materials, J. Magnes. Alloys, 9(2021), No. 6, p. 1922. doi: 10.1016/j.jma.2021.10.002
      [20]
      Y.P. Pang, D.K. Sun, Q.F. Gu, K.C. Chou, X.L. Wang, and Q. Li, Comprehensive determination of kinetic parameters in solid-state phase transitions: An extended jonhson–mehl–avrami–kolomogorov model with analytical solutions, Cryst. Growth Des., 16(2016), No. 4, p. 2404. doi: 10.1021/acs.cgd.6b00187
      [21]
      F. Samadpour, G. Faraji, and A. Siahsarani, Processing of AM60 magnesium alloy by hydrostatic cyclic expansion extrusion at elevated temperature as a new severe plastic deformation method, Int. J. Miner. Metall. Mater., 27(2020), No. 5, p. 669. doi: 10.1007/s12613-019-1921-7
      [22]
      X. Gao and J.F. Nie, Structure and thermal stability of primary intermetallic particles in an Mg–Zn casting alloy, Scripta Mater., 57(2007), No. 7, p. 655. doi: 10.1016/j.scriptamat.2007.06.005
      [23]
      Q. Luo, Y.L. Guo, B. Liu, Y.J. Feng, J.Y. Zhang, Q. Li, and K.C. Chou, Thermodynamics and kinetics of phase transformation in rare earth-magnesium alloys: A critical review, J. Mater. Sci. Technol., 44(2020), p. 171. doi: 10.1016/j.jmst.2020.01.022
      [24]
      A.R. Wu, Y. Gu, and C.Q. Xia, Study of microstructure and properties of Mg–RE(Ce Nd Y)–Zn–Zr alloys, Hot Working Technol., 33(2004), No. 12, p. 21.
      [25]
      Y. Zhang, X.Q. Zeng, L.F. Liu, C. Lu, H.T. Zhou, Q. Li, and Y.P. Zhu, Effects of yttrium on microstructure and mechanical properties of hot-extruded Mg–Zn–Y–Zr alloys, Mater. Sci. Eng. A, 373(2004), No. 1-2, p. 320. doi: 10.1016/j.msea.2004.02.007
      [26]
      X.P. Zhang, G.Y. Yuan, Y. Liu, and W.J. Ding, Effects of alloying elements on the microstructure and mechanical properties of Mg–Zn–Gd alloys, Special Cast. Nonferrous Alloys, 28(2008), No. 11, p. 882.
      [27]
      Y.G. Jung, W. Yang, J.I. Hyun, S.K. Kim, H. Lim, and D.H. Kim, Effects of I- and W-phases under identical conditions on microstructure and mechanical properties of as-cast Mg–Zn–Y alloys at room and elevated temperatures, Met. Mater. Int., 27(2021), No. 12, p. 5154. doi: 10.1007/s12540-020-00848-w
      [28]
      W.B. Luo, Z.Y. Xue, and W.M. Mao, Effect of heat treatment on the microstructure and micromechanical properties of the rapidly solidified Mg61.7Zn34Gd4.3 alloy containing icosahedral phase, Int. J. Miner. Metall. Mater., 26(2019), No. 7, p. 869. doi: 10.1007/s12613-019-1799-4
      [29]
      D.H. Bae, S.H. Kim, D.H. Kim, and W.T. Kim, Deformation behavior of Mg–Zn–Y alloys reinforced by icosahedral quasicrystalline particles, Acta Mater., 50(2002), No. 9, p. 2343. doi: 10.1016/S1359-6454(02)00067-8
      [30]
      S.M. Zhu, T.B. Abbott, M.A. Gibson, J.F. Nie, and M.A. Easton, The influence of minor Mn additions on creep resistance of die-cast Mg–Al–RE alloys, Mater. Sci. Eng. A, 682(2017), p. 535. doi: 10.1016/j.msea.2016.11.075
      [31]
      D. Shechtman, I. Blech, D. Gratias, and J.W. Cahn, Metallic phase with long-range orientational order and no translational symmetry, Phys. Rev. Lett., 53(1984), No. 20, p. 1951. doi: 10.1103/PhysRevLett.53.1951
      [32]
      A. Langsdorf, F. Ritter, and W. Assmus, Determination of the primary solidification area of the icosahedral phase in the ternary phase diagram of Zn–Mg–Y, Philos. Mag. Lett., 75(1997), No. 6, p. 381. doi: 10.1080/095008397179453
      [33]
      E. Abe, T.J. Sato, and A.P. Tsai, Structure and phase transformation of the Zn–Mg-rare-earth quasicrystals, Mater. Sci. Eng. A, 294-296(2000), p. 29. doi: 10.1016/S0921-5093(00)01312-5
      [34]
      S. Yi, E.S. Park, J.B. Ok, W.T. Kim, and D.H. Kim, (Icosahedral phase+α-Mg) two phase microstructures in the Mg–Zn–Y ternary system, Mater. Sci. Eng. A, 300(2001), No. 1-2, p. 312. doi: 10.1016/S0921-5093(00)01474-X
      [35]
      J.S. Zhang, J. Yan, W. Liang, C.X. Xu, and C.L. Zhou, Icosahedral quasicrystal phase in Mg–Zn–Nd ternary system, Mater. Lett., 62(2008), No. 30, p. 4489. doi: 10.1016/j.matlet.2008.08.005
      [36]
      C.P. Yang, Effect of Solidification Rate and Heattreatment on Microstructure Evolution of MgZnNd Quasicrystal Alloy [Dissertation]. University of Jinan, Jinan, 2015, p. 40.
      [37]
      L. Yang, H. Hou, Y.H. Zhao, X.M. Yang, and X.J. Hao, Effects of heat treatment on microstructure and properties of Mg–45Zn–1.5Nd alloy, Trans. Mater. Heat Treat., 35(2014), No. 8, p. 53.
      [38]
      M.L. Huang, J.Y. Yang, H.X. Li, Y.P. Ren, H. Ding, and S.M. Hao, Research on the local equilibria in the Mg-rich coener of the Mg–Zn–Nd system at 300°C, J. Mater. Metal., 7(2008), No. 2, p. 126.
      [39]
      A. Mostafa and M. Medraj, Experimental investigation of the Mg–Nd–Zn isothermal section at 300°C, Metals, 5(2015), No. 1, p. 84. doi: 10.3390/met5010084
      [40]
      C. Zhang, A.A. Luo, L.M. Peng, D.S. Stone, and Y.A. Chang, Thermodynamic modeling and experimental investigation of the magnesium–neodymium–zinc alloys, Intermetallics, 19(2011), No. 11, p. 1720. doi: 10.1016/j.intermet.2011.07.001
      [41]
      J.S. Zhang, J. Yan, W. Liang, E.L. Du, and C.X. Xu, Microstructures of Mg–Zn–Nd alloy including small quasicrystalline grains, J. Non Cryst. Solids, 355(2009), No. 14-15, p. 836. doi: 10.1016/j.jnoncrysol.2009.04.022
      [42]
      A. Niikura, A.P. Tsai, A. Inoue, and T. Masumoto, New class of amorphous and icosahedral phases in Zn–Mg–rare-earth metal alloys, Jpn. J. Appl. Phys., 33(1994), p. L1538. doi: 10.1143/JJAP.33.L1538
      [43]
      X.J. Ge, Study on the Formation and Stability of Quasicrystal Phase in MgZnNd Alloys [Dissertation]. University of Jinan, Jinan, 2018, p. 39.
      [44]
      J. Gröbner, A. Kozlov, X.Y. Fang, J. Geng, J.F. Nie, and R. Schmid-Fetzer, Phase equilibria and transformations in ternary Mg-rich Mg–Y–Zn alloys, Acta Mater., 60(2012), No. 17, p. 5948. doi: 10.1016/j.actamat.2012.05.035

    Catalog


    • /

      返回文章
      返回