留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 7
Jul.  2022

图(12)

数据统计

分享

计量
  • 文章访问数:  1908
  • HTML全文浏览量:  371
  • PDF下载量:  147
  • 被引次数: 0
Mengchen Song, Liuting Zhang, Jiaguang Zheng, Zidong Yu,  and Shengnan Wang, Constructing graphene nanosheet-supported FeOOH nanodots for hydrogen storage of MgH2, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1464-1473. https://doi.org/10.1007/s12613-021-2393-0
Cite this article as:
Mengchen Song, Liuting Zhang, Jiaguang Zheng, Zidong Yu,  and Shengnan Wang, Constructing graphene nanosheet-supported FeOOH nanodots for hydrogen storage of MgH2, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1464-1473. https://doi.org/10.1007/s12613-021-2393-0
引用本文 PDF XML SpringerLink
研究论文

构建负载于石墨烯纳米片的FeOOH纳米粒子用于改善氢化镁的储氢性能

  • 通讯作者:

    张刘挺    E-mail: zhanglt89@just.edu.cn

    王胜男    E-mail: shengnan@caep.cn

文章亮点

  • (1) 通过水热法成功构筑了石墨烯纳米片负载的FeOOH纳米粒子(FeOOH NDs@G)。
  • (2) FeOOH NDs@G有效降低了MgH2的放氢活化能和吸氢活化能,且复合体系20次循环后仍保持初始容量的98.5%。
  • (3) FeOOH NDs@G对MgH2的催化活性归因于石墨烯纳米片与原位生成的Fe之间的协同作用。
  • 氢能具有热值高、零碳排放和来源丰富等优点,被认为是一种能有效替代化石燃料、实现碳中和目标的能源载体。然而,安全高效的储氢技术仍然是大规模应用氢能的关键挑战之一。氢化镁(MgH2)因其储氢量高(7.6wt%)、可逆性好而备受关注。本工作采用水热法成功制备了石墨烯纳米片负载的FeOOH纳米点(FeOOH NDs@G),并通过机械球磨法将其掺杂到MgH2中。研究结果表明, MgH2–10wt%FeOOH NDs@G复合材料在229.8°C开始放氢,比纯MgH2的放氢温度降低了106.8°C。在3.2 MPa的氢气压力下,完全放氢的MgH2–10wt%FeOOH NDs@G样品可在200°C、60 min内吸收6.0wt%氢气。加入FeOOH NDs@G后,MgH2的放氢活化能和吸氢活化能分别降至125.03和58.20 kJ·mol–1 (纯MgH2的脱氢活化能分别为156.05和82.80 kJ·mol–1)。此外,MgH2 –10wt%FeOOH NDs@G复合材料的储氢容量在20次循环后仍保持初始容量的98.5%,表现出良好的循环稳定性。FeOOH NDs@G对MgH2的催化作用归因于石墨烯纳米片与原位生成的Fe之间的协同作用,在阻碍Mg/MgH2颗粒团聚的同时加速了氢的扩散速率,从而使MgH2–10wt%FeOOH NDs@G复合材料展现出良好的储氢性能。
  • Research Article

    Constructing graphene nanosheet-supported FeOOH nanodots for hydrogen storage of MgH2

    + Author Affiliations
    • Novel graphene-supported FeOOH nanodots (FeOOH NDs@G) were successfully prepared by a facile hydrothermal method and doped into MgH2 through mechanical ball-milling. MgH2 with 10wt% FeOOH NDs@G began to release hydrogen at 229.8°C, which is 106.8°C lower than that of pure MgH2. The MgH2–10wt% FeOOH NDs@G composite could reversibly absorb 6.0wt% hydrogen at 200°C under a 3.2 MPa hydrogen pressure within 60 min. With the addition of FeOOH NDs@G, the dehydrogenation and hydrogenation activation energy of MgH2 was decreased to 125.03 and 58.20 kJ·mol−1 (156.05 and 82.80 kJ·mol−1 for pure MgH2), respectively. Furthermore, the hydrogen capacity of the FeOOH NDs@G composite retained 98.5% of the initial capacity after 20 cycles, showing good cyclic stability. The catalytic action of FeOOH NDs@G towards MgH2 could be attributed to the synergistic effect between graphene nanosheets and in-situ formed Fe, which prevented the aggregation of Mg/MgH2 particles and accelerated the hydrogen diffusion during cycling, thus enabling the MgH2–10wt% FeOOH NDs@G composite to exhibit excellent hydrogen storage performance.
    • loading
    • [1]
      L. Maugeri, Oil: never cry wolf—Why the petroleum age is far from over, Science, 304(2004), No. 5674, p. 1114. doi: 10.1126/science.1096427
      [2]
      C. Wan, L. Zhou, and S.M. Xu, et al., Defect engineered mesoporous graphitic carbon nitride modified with AgPd nanoparticles for enhanced photocatalytic hydrogen evolution from formic acid, Chem. Eng. J., 429(2022), art. No. 132388. doi: 10.1016/j.cej.2021.132388
      [3]
      Y.H. Zhang, W. Zhang, and X.P. Song, et al., Effects of spinning rate on structures and electrochemical hydrogen storage performances of RE–Mg–Ni–Mn-based AB2-type alloys, Trans. Nonferrous Met. Soc. China, 26(2016), No. 12, p. 3219. doi: 10.1016/S1003-6326(16)64454-0
      [4]
      L. Schlapbach and A. Züttel, Hydrogen-storage materials for mobile applications, Nature, 414(2001), No. 6861, p. 353. doi: 10.1038/35104634
      [5]
      Q.W. Lai, M. Paskevicius, and D.A. Sheppard, et al., Hydrogen storage materials for mobile and stationary applications: Current state of the art, ChemSusChem, 8(2015), No. 17, p. 2789. doi: 10.1002/cssc.201500231
      [6]
      S.K. Jeon, O.H. Kwon, H.S. Jang, K.S. Ryu, and S.H. Nahm, Effect of high pressure hydrogen on the mechanical characteristics of single carbon fiber, Appl. Surf. Sci., 432(2018), p. 176. doi: 10.1016/j.apsusc.2017.07.005
      [7]
      A. Hammad and I. Dincer, Analysis and assessment of an advanced hydrogen liquefaction system, Int. J. Hydrogen Energy, 43(2018), No. 2, p. 1139. doi: 10.1016/j.ijhydene.2017.10.158
      [8]
      Y. Li, Y. Tao, and Q. Huo, Effect of stoichiometry and Cu-substitution on the phase structure and hydrogen storage properties of Ml–Mg–Ni-based alloys, Int. J. Miner. Metall. Mater., 22(2015), No. 1, p. 86. doi: 10.1007/s12613-015-1047-5
      [9]
      J.O. Abe, A.P.I. Popoola, E. Ajenifuja, and O.M. Popoola, Hydrogen energy, economy and storage: Review and recommendation, Int. J. Hydrogen Energy, 44(2019), No. 29, p. 15072. doi: 10.1016/j.ijhydene.2019.04.068
      [10]
      Y. Kojima, Hydrogen storage materials for hydrogen and energy carriers, Int. J. Hydrogen Energy, 44(2019), No. 33, p. 18179. doi: 10.1016/j.ijhydene.2019.05.119
      [11]
      G.Z. Kang and H. Li, Review on cyclic plasticity of magnesium alloys: Experiments and constitutive models, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 567. doi: 10.1007/s12613-020-2216-8
      [12]
      Y. Wang and Y.J. Wang, Recent advances in additive-enhanced magnesium hydride for hydrogen storage, Prog. Nat. Sci. Mater. Int., 27(2017), No. 1, p. 41. doi: 10.1016/j.pnsc.2016.12.016
      [13]
      F.Y. Cheng, Z.L. Tao, J. Liang, and J. Chen, Efficient hydrogen storage with the combination of lightweight Mg/MgH2 and nanostructures, Chem. Commun., 48(2012), No. 59, art. No. 7334. doi: 10.1039/c2cc30740e
      [14]
      L.X. Hu and E.D. Wang, Hydrogen generation via hydrolysis of nanocrystalline MgH2 and MgH2-based composites, Trans. Nonferrous Met. Soc. China, 15(2005), No. 5, p. 965.
      [15]
      L.S. Xie, J.S. Li, T.B. Zhang, and H.C. Kou, Role of milling time and Ni content on dehydrogenation behavior of MgH2/Ni composite, Trans. Nonferrous Met. Soc. China, 27(2017), No. 3, p. 569. doi: 10.1016/S1003-6326(17)60063-3
      [16]
      Y.H. Sun, T.Y. Ma, and K.F. Aguey-Zinsou, Magnesium supported on nickel nanobelts for hydrogen storage: Coupling nanosizing and catalysis, ACS Appl. Nano Mater., 1(2018), No. 3, p. 1272. doi: 10.1021/acsanm.8b00033
      [17]
      Q.Y. Zhang, Y.K. Huang, and L. Xu, et al., Highly dispersed MgH2 nanoparticle–graphene nanosheet composites for hydrogen storage, ACS Appl. Nano Mater., 2(2019), No. 6, p. 3828. doi: 10.1021/acsanm.9b00694
      [18]
      C.Q. Zhou, Y.Y. Peng, and Q.G. Zhang, Growth kinetics of MgH2 nanocrystallites prepared by ball milling, J. Mater. Sci. Technol., 50(2020), p. 178. doi: 10.1016/j.jmst.2020.01.063
      [19]
      Y.H. Zhang, D.L. Zhao, and B.W. Li, et al., Hydrogen storage behaviours of nanocrystalline and amorphous Mg20Ni10–xCox (x=0–4) alloys prepared by melt spinning, Trans. Nonferrous Met. Soc. China, 20(2010), No. 3, p. 405. doi: 10.1016/S1003-6326(09)60154-0
      [20]
      J.Z. Song, Z.Y. Zhao, X. Zhao, R.D. Fu, and S.M. Han, Hydrogen storage properties of MgH2 co-catalyzed by LaH3 and NbH, Int. J. Miner. Metall. Mater., 24(2017), No. 10, p. 1183. doi: 10.1007/s12613-017-1509-z
      [21]
      Y.H. Zhang, T. Yang, and W.G. Bu, et al., Effect of Nd content on electrochemical performances of nanocrystalline and amorphous (Mg24Ni10Cu2)100−xNdx (x=0−20) alloys prepared by melt spinning, Trans. Nonferrous Met. Soc. China, 23(2013), No. 12, p. 3668. doi: 10.1016/S1003-6326(13)62915-5
      [22]
      Y.H. Zhang, L.W. Li, and D.C. Feng, et al., Hydrogen storage behavior of nanocrystalline and amorphous La–Mg–Ni-based LaMg12-type alloys synthesized by mechanical milling, Trans. Nonferrous Met. Soc. China, 27(2017), No. 3, p. 551. doi: 10.1016/S1003-6326(17)60061-X
      [23]
      V. Knotek and D. Vojtěch, Electrochemical hydriding performance of Mg–TM–Mm (TM=transition metals, Mm=mischmetal) alloys for hydrogen storage, Trans. Nonferrous Met. Soc. China, 23(2013), No. 7, p. 2047. doi: 10.1016/S1003-6326(13)62695-3
      [24]
      X. Zhao, S.M. Han, Y. Li, X.C. Chen, and D.D. Ke, Effect of CeH2.29 on the microstructures and hydrogen properties of LiBH4–Mg2NiH4 composites, Int. J. Miner. Metall. Mater., 22(2015), No. 4, p. 423. doi: 10.1007/s12613-015-1089-8
      [25]
      C.C. Xu, X.Z. Xiao, and J. Shao, et al., Effects of Ti-based additives on Mg2FeH6 dehydrogenation properties, Trans. Nonferrous Met. Soc. China, 26(2016), No. 3, p. 791. doi: 10.1016/S1003-6326(16)64169-9
      [26]
      F.M. Nyahuma, L.T. Zhang, and M.C. Song, et al., Significantly improved hydrogen storage behaviors of MgH2 with Nb nanocatalyst, Int. J. Miner. Metall. Mater., 2021, DOI: 10.1007/s12613-021-2303-5
      [27]
      Z. Zhang, J.H. Zhang, and J. Wang, et al., Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 30. doi: 10.1007/s12613-020-2190-1
      [28]
      F.A.H. Yap, N.N. Sulaiman, and M. Ismail, Understanding the dehydrogenation properties of MgH2 catalysed by Na3AlF6, Int. J. Hydrogen Energy, 44(2019), No. 58, p. 30583. doi: 10.1016/j.ijhydene.2018.02.073
      [29]
      Q.Y. Zhang, Y.K. Huang, and T.C. Ma, et al., Facile synthesis of small MgH2 nanoparticles confined in different carbon materials for hydrogen storage, J. Alloys Compd., 825(2020), art. No. 153953. doi: 10.1016/j.jallcom.2020.153953
      [30]
      Y.H. Jia, S.M. Han, and W. Zhang, et al., Hydrogen absorption and desorption kinetics of MgH2 catalyzed by MoS2 and MoO2, Int. J. Hydrogen Energy, 38(2013), No. 5, p. 2352. doi: 10.1016/j.ijhydene.2012.12.018
      [31]
      G.H. Majzoobi and K. Rahmani, Mechanical characterization of Mg–B4C nanocomposite fabricated at different strain rates, Int. J. Miner. Metall. Mater., 27(2020), No. 2, p. 252. doi: 10.1007/s12613-019-1902-x
      [32]
      U. Ulmer, D. Oertel, and T. Diemant, et al., Performance improvement of V–Fe–Cr–Ti solid state hydrogen storage materials in impure hydrogen gas, ACS Appl. Mater. Interfaces, 10(2018), No. 2, p. 1662. doi: 10.1021/acsami.7b13541
      [33]
      X. Zhang, Z.H. Ren, and Y.H. Lu, et al., Facile synthesis and superior catalytic activity of nano-TiN@N–C for hydrogen storage in NaAlH4, ACS Appl. Mater. Interfaces, 10(2018), No. 18, p. 15767. doi: 10.1021/acsami.8b04011
      [34]
      B. Yang, J.X. Zou, and T.P. Huang, et al., Enhanced hydrogenation and hydrolysis properties of core-shell structured Mg–MOx (M = Al, Ti and Fe) nanocomposites prepared by arc plasma method, Chem. Eng. J., 371(2019), p. 233. doi: 10.1016/j.cej.2019.04.046
      [35]
      X. Zhang, Y.F. Liu, K. Wang, M.X. Gao, and H.G. Pan, Remarkably improved hydrogen storage properties of nanocrystalline TiO2-modified NaAlH4 and evolution of Ti-containing species during dehydrogenation/hydrogenation, Nano Res., 8(2015), No. 2, p. 533. doi: 10.1007/s12274-014-0667-9
      [36]
      X.Y. Ma, J.Q. Li, and C.H. An, et al., Ultrathin Co(Ni)-doped MoS2 nanosheets as catalytic promoters enabling efficient solar hydrogen production, Nano Res., 9(2016), No. 8, p. 2284. doi: 10.1007/s12274-016-1115-9
      [37]
      S.R. Naqvi, T. Hussain, W. Luo, and R. Ahuja, Metallized siligraphene nanosheets (SiC7) as high capacity hydrogen storage materials, Nano Res., 11(2018), No. 7, p. 3802. doi: 10.1007/s12274-017-1954-z
      [38]
      Z.Y. Lu, H.J. Yu, and X. Lu, et al., Two-dimensional vanadium nanosheets as a remarkably effective catalyst for hydrogen storage in MgH2, Rare Met., 40(2021), No. 11, p. 3195. doi: 10.1007/s12598-021-01764-7
      [39]
      L. Xie, Y. Liu, and X.Z. Zhang, et al., Catalytic effect of Ni nanoparticles on the desorption kinetics of MgH2 nanoparticles, J. Alloys Compd., 482(2009), No. 1-2, p. 388. doi: 10.1016/j.jallcom.2009.04.028
      [40]
      W.C. Huang, J. Yuan, and J.G. Zhang, et al., Improving dehydrogenation properties of Mg/Nb composite films via tuning Nb distributions, Rare Met., 36(2017), No. 7, p. 574. doi: 10.1007/s12598-017-0913-x
      [41]
      Y. Wang, Q.Y. Zhang, Y.J. Wang, L.F. Jiao, and H.T. Yuan, Catalytic effects of different Ti-based materials on dehydrogenation performances of MgH2, J. Alloys Compd., 645(2015), p. S509. doi: 10.1016/j.jallcom.2014.12.071
      [42]
      A. Bassetti, E. Bonetti, and L. Pasquini, et al., Hydrogen desorption from ball milled MgH2 catalyzed with Fe, Eur. Phys. J. B, 43(2005), No. 1, p. 19. doi: 10.1140/epjb/e2005-00023-9
      [43]
      L.T. Zhang, L. Ji, and Z.D. Yao, et al., Facile synthesized Fe nanosheets as superior active catalyst for hydrogen storage in MgH2, Int. J. Hydrogen Energy, 44(2019), No. 39, p. 21955. doi: 10.1016/j.ijhydene.2019.06.065
      [44]
      G.L. Xia, Y.B. Tan, and X.W. Chen, et al., Monodisperse magnesium hydride nanoparticles uniformly self-assembled on graphene, Adv. Mater., 27(2015), No. 39, p. 5981. doi: 10.1002/adma.201502005
      [45]
      L. Ji, L.T. Zhang, X.L. Yang, X.Q. Zhu, and L.X. Chen, The remarkably improved hydrogen storage performance of MgH2 by the synergetic effect of an FeNi/rGO nanocomposite, Dalton Trans., 49(2020), No. 13, p. 4146. doi: 10.1039/D0DT00230E
      [46]
      J.Q. Liu, M.B. Zheng, X.Q. Shi, H.B. Zeng, and H. Xia, Amorphous FeOOH quantum dots assembled mesoporous film anchored on graphene nanosheets with superior electrochemical performance for supercapacitors, Adv. Funct. Mater., 26(2016), No. 6, p. 919. doi: 10.1002/adfm.201504019
      [47]
      R.V. Muraleedharan, On Johnson-Mehl-Avrami equation, J. Therm. Anal., 37(1991), No. 11-12, p. 2729. doi: 10.1007/BF01912817
      [48]
      E. Xu, H. Li, X.M. You, C. Bu, L.F. Zhang, Q. Wang, and Z.G. Zhao, Influence of micro-amount O2 or N2 on the hydrogenation/dehydrogenation kinetics of hydrogen-storage material MgH2, Int. J. Hydrogen Energy, 42(2017), No. 12, p. 8057. doi: 10.1016/j.ijhydene.2016.12.102
      [49]
      G. Liu, Y.J. Wang, and C.C. Xu, et al., Excellent catalytic effects of highly crumpled graphene nanosheets on hydrogenation/dehydrogenation of magnesium hydride, Nanoscale, 5(2013), No. 3, p. 1074. doi: 10.1039/C2NR33347C

    Catalog


    • /

      返回文章
      返回