Cite this article as:

Mengchen Song, Liuting Zhang, Jiaguang Zheng, Zidong Yu, and Shengnan Wang, Constructing graphene nanosheet-supported FeOOH nanodots for hydrogen storage of MgH2, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp.1464-1473. https://dx.doi.org/10.1007/s12613-021-2393-0
Mengchen Song, Liuting Zhang, Jiaguang Zheng, Zidong Yu, and Shengnan Wang, Constructing graphene nanosheet-supported FeOOH nanodots for hydrogen storage of MgH2, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp.1464-1473. https://dx.doi.org/10.1007/s12613-021-2393-0
引用本文 PDF XML SpringerLink

构建负载于石墨烯纳米片的FeOOH纳米粒子用于改善氢化镁的储氢性能

摘要: 氢能具有热值高、零碳排放和来源丰富等优点,被认为是一种能有效替代化石燃料、实现碳中和目标的能源载体。然而,安全高效的储氢技术仍然是大规模应用氢能的关键挑战之一。氢化镁(MgH2)因其储氢量高(7.6wt%)、可逆性好而备受关注。本工作采用水热法成功制备了石墨烯纳米片负载的FeOOH纳米点(FeOOH NDs@G),并通过机械球磨法将其掺杂到MgH2中。研究结果表明, MgH2–10wt%FeOOH NDs@G复合材料在229.8°C开始放氢,比纯MgH2的放氢温度降低了106.8°C。在3.2 MPa的氢气压力下,完全放氢的MgH2–10wt%FeOOH NDs@G样品可在200°C、60 min内吸收6.0wt%氢气。加入FeOOH NDs@G后,MgH2的放氢活化能和吸氢活化能分别降至125.03和58.20 kJ·mol–1 (纯MgH2的脱氢活化能分别为156.05和82.80 kJ·mol–1)。此外,MgH2 –10wt%FeOOH NDs@G复合材料的储氢容量在20次循环后仍保持初始容量的98.5%,表现出良好的循环稳定性。FeOOH NDs@G对MgH2的催化作用归因于石墨烯纳米片与原位生成的Fe之间的协同作用,在阻碍Mg/MgH2颗粒团聚的同时加速了氢的扩散速率,从而使MgH2–10wt%FeOOH NDs@G复合材料展现出良好的储氢性能。

 

Constructing graphene nanosheet-supported FeOOH nanodots for hydrogen storage of MgH2

Abstract: Novel graphene-supported FeOOH nanodots (FeOOH NDs@G) were successfully prepared by a facile hydrothermal method and doped into MgH2 through mechanical ball-milling. MgH2 with 10wt% FeOOH NDs@G began to release hydrogen at 229.8°C, which is 106.8°C lower than that of pure MgH2. The MgH2–10wt% FeOOH NDs@G composite could reversibly absorb 6.0wt% hydrogen at 200°C under a 3.2 MPa hydrogen pressure within 60 min. With the addition of FeOOH NDs@G, the dehydrogenation and hydrogenation activation energy of MgH2 was decreased to 125.03 and 58.20 kJ·mol−1 (156.05 and 82.80 kJ·mol−1 for pure MgH2), respectively. Furthermore, the hydrogen capacity of the FeOOH NDs@G composite retained 98.5% of the initial capacity after 20 cycles, showing good cyclic stability. The catalytic action of FeOOH NDs@G towards MgH2 could be attributed to the synergistic effect between graphene nanosheets and in-situ formed Fe, which prevented the aggregation of Mg/MgH2 particles and accelerated the hydrogen diffusion during cycling, thus enabling the MgH2–10wt% FeOOH NDs@G composite to exhibit excellent hydrogen storage performance.

 

/

返回文章
返回