留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 2
Feb.  2023

图(10)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  738
  • HTML全文浏览量:  279
  • PDF下载量:  55
  • 被引次数: 0
Qinli Zhang, Hao Wu, Yan Feng, Daolin Wang, Huaibin Su, and Xiaoshuang Li, Rheological and physicomechanical properties of rod milling sand-based cemented paste backfill modified by sulfonated naphthalene formaldehyde condensate, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 225-235. https://doi.org/10.1007/s12613-021-2397-9
Cite this article as:
Qinli Zhang, Hao Wu, Yan Feng, Daolin Wang, Huaibin Su, and Xiaoshuang Li, Rheological and physicomechanical properties of rod milling sand-based cemented paste backfill modified by sulfonated naphthalene formaldehyde condensate, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 225-235. https://doi.org/10.1007/s12613-021-2397-9
引用本文 PDF XML SpringerLink
研究论文

磺化萘甲醛缩合物改性棒磨砂基胶结膏回填体的流变物理力学性能

  • 通讯作者:

    冯岩    E-mail: yan.feng@csu.edu.cn

文章亮点

  • (1) SNF的存在增加了RCPB浆料的屈服应力。
  • (2) 新鲜RCPB的泌水率随着SNF用量的增加先下降后上升。
  • (3) SNF显著改善了RCPB固化7天和14天的早期UCS,但阻碍了固化28天样品的UCS发展。
  • (4) SNF加速了RCPB的水化反应,增加了水化产物的数量,缩小了孔径,压实了样品的微观结构。
  • 棒磨砂(RMS)是一种可以制备棒磨砂基胶结膏充填材料(RCPB)的粗砂骨料,主要用于金川镍矿地下矿区的胶结膏体充填(CPB)。众所周知,粗颗粒通过管道输送到地下采场会导致回填系统稳定性减弱。因此,磺化萘甲醛(SNF)缩合物常被用于RCPB性能的改善。本文研究了固含量 (SC)、灰砂比和 SNF 用量对流变和物理力学性能的协同影响,包括坍落度、屈服应力、泌水率、单轴抗压强度 (UCS),以及 RCPB 的机理分析。结果表明,SNF 对 RCPB 性能的影响与 SNF 用量、石灰砂比和 SC 有关。含有 0.1wt%–0.5wt% SNF 的新鲜 RCPB 的坍落度增加了 2.6%–26.2%,而屈服应力降低了 4.1%–50.3%,表明混合料的可加工性和粘结性更好。新鲜RCPB的泌水率随着SNF用量的增加先下降后上升,下降峰值为67.67%。此外,RCPB的UCS会随SNF用量的增加先升高后降低。在0.3wt%的最佳SNF添加比例下,RCPB养护7、14和28 d的UCS分别提高了31.5%、28.4%和29.5%。 结果表明SNF 有利于增强 RCPB 早期的UCS 。但是,后期的UCS以较慢的速度增加。研究结果可以指导具有实际应用性能的 RCPB 的设计和制备。
  • Research Article

    Rheological and physicomechanical properties of rod milling sand-based cemented paste backfill modified by sulfonated naphthalene formaldehyde condensate

    + Author Affiliations
    • Rod milling sand (RMS)—a coarse sand aggregate—was recycled for cemented paste backfill (CPB) for the underground mined area at the Jinchuan nickel deposit, named rod milling sand-based cemented paste backfill (RCPB). The adverse effects of coarse particles on the transportation of CPB slurry through pipelines to underground stopes resulting in weakening of the stability of the backfill system are well known. Therefore, sulfonated naphthalene formaldehyde (SNF) condensate was used for the performance improvement of RCPB. The synergistic effect of solid content (SC), lime-to-sand ratio, and SNF dosage on the rheological and physicomechanical properties, including slump, yield stress, bleeding rate, uniaxial compressive strength (UCS), as well as mechanism analysis of RCPB, have been explored. The results indicate that the effect of SNF on RCPB performance is related to the SNF dosage, lime-to-sand ratio, and SC. The slump of fresh RCPB with 0.1wt%–0.5wt% SNF increased by 2.6%–26.2%, whereas the yield stress reduced by 4.1%–50.3%, indicating better workability and improved cohesiveness of the mix. The bleeding rate of fresh RCPB decreased first and then rose with the increase of SNF dosage, and the peak decrease was 67.67%. UCS of RCPB first increased and then decreased with the increase of SNF dosage. At the optimal SNF addition ratio of 0.3wt%, the UCS of RCPB curing for 7, 14 and, 28 d ages increased by 31.5%, 28.4%, and 29.5%, respectively. The beneficial effects of SNF in enhancing the early UCS of RCPB have been corroborated. However, the later UCS increases at a slower rate. The research findings may guide the design and preparation of RCPB with adequate performance for practical applications.
    • loading
    • [1]
      L. Yang, E. Yilmaz, J.W. Li, H. Liu, and H.Q. Jiang, Effect of superplasticizer type and dosage on fluidity and strength behavior of cemented tailings backfill with different solid contents, Constr. Build. Mater., 187(2018), p. 290. doi: 10.1016/j.conbuildmat.2018.07.155
      [2]
      Q.S. Chen, S.Y. Sun, Y.K. Liu, C.C. Qi, H.B Zhou and Q.L. Zhang, Immobilization and leaching characteristics of fluoride from phosphogypsum-based cemented paste backfill, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1440. doi: 10.1007/s12613-021-2274-6
      [3]
      Y.Y. Tan, E. Davide, Y.C. Zhou, W.D. Song, and X. Meng, Long-term mechanical behavior and characteristics of cemented tailings backfill through impact loading, Int. J. Miner. Metall. Mater., 27(2020), No. 2, p. 140. doi: 10.1007/s12613-019-1878-6
      [4]
      Q.L. Zhang, B.Y. Zhang, Q.S. Chen, D.L. Wang, and X. Gao, Safety analysis of synergetic operation of backfilling the open pit using tailings and excavating the ore deposit underground, Minerals, 11(2021), No. 8, art. No. 818. doi: 10.3390/min11080818
      [5]
      M. Sheshpari, A review of underground mine backfilling methods with emphasis on cemented paste backfill, Electron. J. Geotech. Eng., 20(2015), No. 13, p. 5183.
      [6]
      H.Y. Cheng, S.C. Wu, X.Q. Zhang, and A.X. Wu, Effect of particle gradation characteristics on yield stress of cemented paste backfill, Int. J. Miner. Metall. Mater, 27(2020), No. 1, p. 10. doi: 10.1007/s12613-019-1865-y
      [7]
      Y. Liu, H. Li, K. Wang, H.F. Wu, and B.Q. Cui, Effects of accelerator-water reducer admixture on performance of cemented paste backfill, Constr. Build. Mater., 242(2020), art. No. 118187. doi: 10.1016/j.conbuildmat.2020.118187
      [8]
      S.H. Yin, Y.J. Shao, A.X. Wu, H.J. Wang, X.H. Liu, and Y. Wang, A systematic review of paste technology in metal mines for cleaner production in China, J. Clean. Prod., 247(2020), art. No. 119590. doi: 10.1016/j.jclepro.2019.119590
      [9]
      Q.S. Chen, Y.B. Tao, Y. Feng, Q.L. Zhang, and Y.K. Liu, Utilization of modified copper slag activated by Na2SO4 and CaO for unclassified lead/zinc mine tailings based cemented paste backfill, J. Environ. Manage., 290(2021), art. No. 112608. doi: 10.1016/j.jenvman.2021.112608
      [10]
      F.F. Jiang, H. Zhou, J. Sheng, Y.Y. Kou, and X.D. Li, Effects of temperature and age on physico-mechanical properties of cemented gravel sand backfills, J. Cent. South Univ., 27(2020), No. 10, p. 2999. doi: 10.1007/s11771-020-4524-6
      [11]
      Z.Q. Yang, Key technology research on the efficient exploitation and comprehensive utilization of resources in the deep Jinchuan nickel deposit, Engineering, 3(2017), No. 4, p. 559. doi: 10.1016/J.ENG.2017.04.021
      [12]
      S. Wang, X.P. Song, X.J. Wang, Q.S. Chen, J.C. Qin, and Y.X. Ke, Influence of coarse tailings on flocculation settlement, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1065. doi: 10.1007/s12613-019-1948-9
      [13]
      C.C. Qi and A. Fourie, Cemented paste backfill for mineral tailings management: Review and future perspectives, Miner. Eng., 144(2019), art. No. 106025. doi: 10.1016/j.mineng.2019.106025
      [14]
      D. Ouattara, A. Yahia, M. Mbonimpa, and T. Belem, Effects of superplasticizer on rheological properties of cemented paste backfills, Int. J. Miner. Process., 161(2017), p. 28. doi: 10.1016/j.minpro.2017.02.003
      [15]
      Y.H. Wu, Q.Q. Li, G.X. Li, S.Y. Tang, M.D. Niu, and Y.F. Wu, Effect of naphthalene-based superplasticizer and polycarboxylic acid superplasticizer on the properties of sulfoaluminate cement, Materials (Basel), 14(2021), No. 3, art. No. 662.
      [16]
      N.S. Msinjili, W. Schmidt, B. Mota, S. Leinitz, H.C. Kühne, and A. Rogge, The effect of superplasticizers on rheology and early hydration kinetics of rice husk ash-blended cementitious systems, Constr. Build. Mater., 150(2017), p. 511. doi: 10.1016/j.conbuildmat.2017.05.197
      [17]
      M.B.C. Mangane, R. Argane, R. Trauchessec, A. Lecomte, and M. Benzaazoua, Influence of superplasticizers on mechanical properties and workability of cemented paste backfill, Miner. Eng., 116(2018), p. 3. doi: 10.1016/j.mineng.2017.11.006
      [18]
      B. Koohestani, A.K. Darban, and P. Mokhtari, A comparison between the influence of superplasticizer and organosilanes on different properties of cemented paste backfill, Constr. Build. Mater., 173(2018), p. 180. doi: 10.1016/j.conbuildmat.2018.03.265
      [19]
      C.B. Cheah, W.K. Chow, C.W. Oo, and K.H. Leow, The influence of type and combination of polycarboxylate ether superplasticizer on the mechanical properties and microstructure of slag-silica fume ternary blended self-consolidating concrete, J. Build. Eng., 31(2020), art. No. 101412. doi: 10.1016/j.jobe.2020.101412
      [20]
      S.H. Lv, H.D. Ding, T. Sun, and J.J. Liu, Effect of naphthalene superplasticizer/graphene oxide composite on microstructure and mechanical properties of hardened cement paste, J. Shaanxi Univ. Sci. Technol. Nat. Sci. Ed., 32(2014), No. 5, p. 42.
      [21]
      G. Tiberti, A. Conforti, and G.A. Plizzari, Precast segments under TBM hydraulic jacks: Experimental investigation on the local splitting behavior, Tunnelling Underground Space Technol., 50(2015), p. 438. doi: 10.1016/j.tust.2015.08.013
      [22]
      F.L. Wang, F.G. Yang, Z.P. Yuan, and S.J. Yang, Effects of fly ash and chemical admixtures on the rheological properties of high-concentration full-tailing filling slurry, Adv. Civ. Eng., 2020(2020), art. No. 8872206. doi: 10.1155/2020/8872206
      [23]
      C.A. Anagnostopoulos, Effect of different superplasticisers on the physical and mechanical properties of cement grouts, Constr. Build. Mater., 50(2014), p. 162. doi: 10.1016/j.conbuildmat.2013.09.050
      [24]
      S. Han, P.Y. Yan, and X.M. Kong, Study on the compatibility of cement-superplasticizer system based on the amount of free solution, Sci. China Technol. Sci., 54(2011), No. 1, p. 183. doi: 10.1007/s11431-010-4174-2
      [25]
      S. Haruna and M. Fall, Time- and temperature-dependent rheological properties of cemented paste backfill that contains superplasticizer, Powder Technol., 360(2020), p. 731. doi: 10.1016/j.powtec.2019.09.025
      [26]
      Y. Nakajima and K. Yamada, The effect of the kind of calcium sulfate in cements on the dispersing ability of poly β-naphthalene sulfonate condensate superplasticizer, Cem. Concr. Res., 34(2004), No. 5, p. 839. doi: 10.1016/j.cemconres.2003.09.022
      [27]
      E. Janowska-Renkas, Impact of sulphate ions content on performance of maleic and acrylic superplasticizers in cement paste, Materials (Basel), 14(2021), No. 10, art. No. 2683.
      [28]
      J. Ren, Superplasticiser for NaOH-activated Slag: Competition and Instability between Superplasticiser and Alkali-activator [Dissertation], University College London, London, 2016.
      [29]
      H. Zhao, M. Deng, and M.S. Tang, The molecular structures and the application properties of sulfonated acetone-formaldehyde superplasticizers at different synthetic methods, Constr. Build. Mater., 241(2020), art. No. 118051. doi: 10.1016/j.conbuildmat.2020.118051
      [30]
      W.X. Cao, W. Yi, S.H. Yin, J.H. Peng, and J. Li, A novel low-density thermal insulation gypsum reinforced with superplasticizers, Constr. Build. Mater., 278(2021), art. No. 122421. doi: 10.1016/j.conbuildmat.2021.122421
      [31]
      M. Garg, A. Pundir, and R. Singh, Modifications in water resistance and engineering properties of β-calcium sulphate hemihydrate plaster-superplasticizer blends, Mater. Struct., 49(2016), No. 8, p. 3253. doi: 10.1617/s11527-015-0717-0
      [32]
      National Standards Administration Committee of China, GB 8076–2008: Concrete Admixtures, China Standard Press, Beijing, 2009.
      [33]
      Ministry of Housing and Urban-Rural Development of the People’s Republic of China (MOHURD), JGJ/T70–2009: Standard for Test Method of Performance on Building Mortar, China Building Industry Press, Beijing, 2009.
      [34]
      S.X. Hu, F.H. Jiang, J.G. Li, C.N. Wu, K. Liu, and Y.M. Chen, Understanding the adsorption behaviors of naphthalene sulfonate formaldehyde in coal water slurry, Colloids Surf. A, 628(2021), art. No. 127245. doi: 10.1016/j.colsurfa.2021.127245
      [35]
      L. Huynh and P. Jenkins, A rheological and electrokinetic investigation of the interactions between pigment particles dispersed in aqueous solutions of short-chain phosphates, Colloids Surf. A, 190(2001), No. 1-2, p. 35. doi: 10.1016/S0927-7757(01)00663-X
      [36]
      G. Zhang, G.X. Li, and Y.C. Li, Effects of superplasticizers and retarders on the fluidity and strength of sulphoaluminate cement, Constr. Build. Mater., 126(2016), p. 44. doi: 10.1016/j.conbuildmat.2016.09.019
      [37]
      J. Zhang, S.C. Li, Z.F. Li, C. Liu, Y.F. Gao, and Y.H. Qi, Properties of red mud blended with magnesium phosphate cement paste: Feasibility of grouting material preparation, Constr. Build. Mater., 260(2020), art. No. 119704. doi: 10.1016/j.conbuildmat.2020.119704
      [38]
      National Standards Administration Committee of China, GB/T 2419–2005: Test Method for Fluidity of Cement Mortar, China Standard Press, Beijing, 2005.
      [39]
      A.X. Wu, Y. Wang, and H.J. Wang, Estimation model for yield stress of fresh uncemented thickened tailings: Coupled effects of true solid density, bulk density, and solid concentration, Int. J. Miner. Process., 143(2015), p. 117. doi: 10.1016/j.minpro.2015.09.010
      [40]
      D. Simon and M. Grabinsky, Apparent yield stress measurement in cemented paste backfill, Int. J. Min. Reclam. Environ., 27(2013), No. 4, p. 231. doi: 10.1080/17480930.2012.680754
      [41]
      Y. Qian and S. Kawashima, Distinguishing dynamic and static yield stress of fresh cement mortars through thixotropy, Cem. Concr. Compos., 86(2018), p. 288. doi: 10.1016/j.cemconcomp.2017.11.019
      [42]
      ASTM International, ASTM D2166/D2166M–16: Standard Test Method for Unconfined Compressive Strength of Cohesive Soil, ASTM international, West Conshohocken, 2016.
      [43]
      X.F. Cui, G.M. Liu, C.L. Wang, and Y.D. Qi, Effects of PET fibers on pumpability, shootability, and mechanical properties of wet-mix shotcrete, Adv. Civ. Eng., 2019(2019), art. No. 2756489. doi: 10.1155/2019/2756489
      [44]
      X.J. Deng, J.X. Zhang, B. Klein, N. Zhou, and B. deWit, Experimental characterization of the influence of solid components on the rheological and mechanical properties of cemented paste backfill, Int. J. Miner. Process., 168(2017), p. 116. doi: 10.1016/j.minpro.2017.09.019
      [45]
      J.P. Qiu, L. Yang, X.G. Sun, J. Xing, and S.B. Li, Strength characteristics and failure mechanism of cemented super-fine unclassified tailings backfill, Minerals, 7(2017), No. 4, art. No. 58. doi: 10.3390/min7040058
      [46]
      J.A. Lewis, H. Matsuyama, G. Kirby, S. Morissette, and J.F. Young, Polyelectrolyte effects on the rheological properties of concentrated cement suspensions, J. Am. Ceram. Soc., 83(2004), No. 8, p. 1905. doi: 10.1111/j.1151-2916.2000.tb01489.x
      [47]
      J.W. Peng, D.H. Deng, H. Huang, Q. Yuan, and J.G. Peng, Influence of superplasticizer on the rheology of fresh cement asphalt paste, Case Stud. Constr. Mater., 3(2015), p. 9. doi: 10.1016/j.cscm.2015.05.002
      [48]
      J.F. Zhu, G.H. Zhang, Z. Miao, and T. Shang, Synthesis and performance of a comblike amphoteric polycarboxylate dispersant for coal–water slurry, Colloids Surf. A, 412(2012), p. 101. doi: 10.1016/j.colsurfa.2012.07.023
      [49]
      X.C. Wang, S.C. Li, A.N. Zhou, R.T. Liu, S.L. Duan, and M. Wang, Influence of the bleeding characteristic on density and rheology in cement slurry, Constr. Build. Mater., 269(2021), art. No. 121316. doi: 10.1016/j.conbuildmat.2020.121316
      [50]
      Y. Peng, R.A. Lauten, K. Reknes, and S. Jacobsen, Bleeding and sedimentation of cement paste measured by hydrostatic pressure and Turbiscan, Cem. Concr. Compos., 76(2017), p. 25. doi: 10.1016/j.cemconcomp.2016.11.013
      [51]
      N. Massoussi, E. Keita, and N. Roussel, The heterogeneous nature of bleeding in cement pastes, Cem. Concr. Res., 95(2017), p. 108. doi: 10.1016/j.cemconres.2017.02.012
      [52]
      J.R. Zheng, Y.L. Zhu, and Z.B. Zhao, Utilization of limestone powder and water-reducing admixture in cemented paste backfill of coarse copper mine tailings, Constr. Build. Mater., 124(2016), p. 31. doi: 10.1016/j.conbuildmat.2016.07.055
      [53]
      K. Klein and D. Simon, Effect of specimen composition on the strength development in cemented paste backfill, Can. Geotech. J., 43(2006), No. 3, p. 310. doi: 10.1139/t06-005
      [54]
      L. Cui and M. Fall, Multiphysics model for consolidation behavior of cemented paste backfill, Int. J. Geomech., 17(2017), No. 3, art. No. 04016077. doi: 10.1061/(ASCE)GM.1943-5622.0000743
      [55]
      H.Z. Jiao, Y.C. Wu, H. Wang, X.M. Chen, Z. Li, Y.F. Wang, B.Y. Zhang, and J.H. Liu, Micro-scale mechanism of sealed water seepage and thickening from tailings bed in rake shearing thickener, Miner. Eng., 173(2021), art. No. 107043. doi: 10.1016/j.mineng.2021.107043
      [56]
      Y.F. Guo, B.G. Ma, Z.Z. Zhi, H.B. Tan, M.Y. Liu, S.W. Jian, and Y.L. Guo, Effect of polyacrylic acid emulsion on fluidity of cement paste, Colloids Surf. A, 535(2017), p. 139. doi: 10.1016/j.colsurfa.2017.09.039
      [57]
      H.Y. Lu, X.F. Li, C.Q. Zhang, J.Y. Chen, L.G. Ma, W.H. Li, and D.P. Xu, Experiments and molecular dynamics simulations on the adsorption of naphthalenesulfonic formaldehyde condensates at the coal–water interface, Fuel, 264(2020), art. No. 116838. doi: 10.1016/j.fuel.2019.116838
      [58]
      S.S. Qian, Y. Yao, Z.M. Wang, S.P. Cui, X. Liu, H.D. Jiang, Z.L. Guo, G.H. Lai, Q. Xu, and J.N. Guan, Synthesis, characterization and working mechanism of a novel polycarboxylate superplasticizer for concrete possessing reduced viscosity, Constr. Build. Mater., 169(2018), p. 452. doi: 10.1016/j.conbuildmat.2018.02.212
      [59]
      K.L. Wang, Y.L. Ding, Z.C. Wang, and B. Du, Development of aromatic water reducer for concrete, J. Shandong Inst. Build. Mater., 18(2004), No. 3, p. 205.
      [60]
      X.M. Kong, Y.R. Zhang, and S.S. Hou, Study on the rheological properties of Portland cement pastes with polycarboxylate superplasticizers, Rheol. Acta, 52(2013), No. 7, p. 707. doi: 10.1007/s00397-013-0713-7
      [61]
      E. Knapen, O. Cizer, K. van Balen, and D. van Gemert, Effect of free water removal from early-age hydrated cement pastes on thermal analysis, Constr. Build. Mater., 23(2009), No. 11, p. 3431. doi: 10.1016/j.conbuildmat.2009.06.004
      [62]
      J.Z. Li, Y. Zhang, and X.M. Cui, The influence of free water content on dielectric properties of alkali active slag cement paste, J. Wuhan Univ. Technol. Mater Sci. Ed., 22(2007), No. 4, p. 774. doi: 10.1007/s11595-006-4774-7
      [63]
      S.X. Hu, J.G. Li, X. Yang, Y.M. Chen, F.H. Li, J.F. Wang, C.N. Wu, L. Weng, and K. Liu, Improvement on slurry ability and combustion dynamics of low quality coals with ultra-high ash content, Chem. Eng. Res. Des., 156(2020), p. 391. doi: 10.1016/j.cherd.2020.02.011
      [64]
      A. Pundir, M. Garg, and R. Singh, Evaluation of properties of gypsum plaster-superplasticizer blends of improved performance, J. Build. Eng., 4(2015), p. 223. doi: 10.1016/j.jobe.2015.09.012
      [65]
      E. Yilmaz, T. Belem, B. Bussière, M. Mbonimpa, and M. Benzaazoua, Curing time effect on consolidation behaviour of cemented paste backfill containing different cement types and contents, Constr. Build. Mater., 75(2015), p. 99. doi: 10.1016/j.conbuildmat.2014.11.008

    Catalog


    • /

      返回文章
      返回