留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 4
Apr.  2022

图(15)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  4655
  • HTML全文浏览量:  1071
  • PDF下载量:  475
  • 被引次数: 0
Shuize Wang, Zhijun Gao, Guilin Wu,  and Xinping Mao, Titanium microalloying of steel: A review of its effects on processing, microstructure and mechanical properties, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 645-661. https://doi.org/10.1007/s12613-021-2399-7
Cite this article as:
Shuize Wang, Zhijun Gao, Guilin Wu,  and Xinping Mao, Titanium microalloying of steel: A review of its effects on processing, microstructure and mechanical properties, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 645-661. https://doi.org/10.1007/s12613-021-2399-7
引用本文 PDF XML SpringerLink
特约综述

钛微合金化技术研究进展

    * 共同第一作者
  • 通讯作者:

    毛新平    E-mail: xinpingmao@ustb.edu.cn

文章亮点

  • (1) 回顾了钛微合金钢技术的发展历程。
  • (2) 阐述了钛微合金钢的化学冶金与物理冶金特征。
  • (3) 结合低碳经济的背景,对钛微合金化技术的发展提出新时期展望。
  • 在碳中和的背景下,高强度钢铁材料的开发与应用是实现钢铁产业绿色低碳的必要选择。钛微合金化是在传统低合金钢中添加少量钛元素从而低成本地大幅提高材料力学性能的技术,可广泛应用于高强度级别的低合金钢。钛作为微合金元素在钢中以固溶和第二相的形式存在,通过细化晶粒和强烈的强化效果而调控钢铁材料的组织和性能。本文回顾了钛微合金化技术的发展历程,阐述了钛微合金钢的化学冶金和物理冶金学特征,重点讨论了钛微合金钢不同加工工艺阶段的相形成规律、组织结构演变、析出行为、力学性能,以及钛微合金化新型钢铁材料。同时,结合低碳经济的新时代背景,对钛微合金化技术未来的发展方向,以及钛微合金化技术在钢铁材料中的应用进行了展望。

  • Invited Review

    Titanium microalloying of steel: A review of its effects on processing, microstructure and mechanical properties

    + Author Affiliations
    • Carbon neutrality of the steel industry requires the development of high-strength steel. The mechanical properties of low-alloy steel can be considerably improved at a low cost by adding a small amount of titanium (Ti) element, namely Ti microalloying, whose performance is related to Ti-contained second phase particles including inclusions and precipitates. By proper controlling the precipitation behaviors of these particles during different stages of steel manufacture, fine-grained microstructure and strong precipitation strengthening effects can be obtained in low-alloy steel. Thus, Ti microalloying can be widely applied to produce high strength steel, which can replace low strength steels heavily used in various areas currently. This article reviews the characteristics of the chemical and physical metallurgies of Ti microalloying and the effects of Ti microalloying on the phase formation, microstructural evolution, precipitation behavior of low-carbon steel during the steel making process, especially the thin slab casting and continuous rolling process and the mechanical properties of final steel products. Future development of Ti microalloying is also proposed to further promote the application of Ti microalloying technology in steel to meet the requirement of low-carbon economy.

    • loading
    • [1]
      M. Ren, P.T. Lu, X.R. Liu, M.S. Hossain, Y.R. Fang, T. Hanaoka, B. O'Gallachoir, J. Glynn, and H.C. Dai, Decarbonizing China’s iron and steel industry from the supply and demand sides for carbon neutrality, Appl. Energy, 298(2021), art. No. 117209. doi: 10.1016/j.apenergy.2021.117209
      [2]
      L. Dong, G.Y. Miao, and W.G. Wen, China’s carbon neutrality policy: Objectives, impacts and paths, East Asian Policy, 13(2021), No. 1, p. 5. doi: 10.1142/S1793930521000015
      [3]
      P. Kah, M. Pirinen, R. Suoranta, and J. Martikainen, Welding of ultra high strength steels, Adv. Mater. Res., 849(2013), p. 357. doi: 10.4028/www.scientific.net/AMR.849.357
      [4]
      T.M. Noren, Columbium as a Micro-alloying Element in Steels and Its Effect on Welding Technology, Ship Structure Committee, Washington, 1963.
      [5]
      Y. Liu, Y.H. Sun, H.T. Wu, Effects of chromium on the microstructure and hot ductility of Nb-microalloyed steel, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 1011. doi: 10.1007/s12613-020-2092-2
      [6]
      C.F. Yang and Y.Q. Zhang, Applications of V–N microalloying technology in HSLA steels, Iron Steel, 37(2002), No. 11, p. 42.
      [7]
      J.Y. Fu, Development history of Nb-microalloying technology and progress of Nb-microalloyed steel, Iron Steel, 40(2005), No. 8, p. 1.
      [8]
      R.D.K. Misra, H. Nathani, J.E. Hartmann, and F. Siciliano, Microstructural evolution in a new 770 MPa hot rolled Nb–Ti microalloyed steel, Mater. Sci. Eng. A, 394(2005), No. 1-2, p. 339. doi: 10.1016/j.msea.2004.11.041
      [9]
      G. Xu, X.L. Gan, G.J. Ma, F. Luo, and H. Zou, The development of Ti-alloyed high strength microalloy steel, Mater. Des., 31(2010), No. 6, p. 2891. doi: 10.1016/j.matdes.2009.12.032
      [10]
      E. López-Chipres, I. Mejía, C. Maldonado, A. Bedolla-Jacuinde, M. El-Wahabi, and J.M. Cabrera, Hot flow behavior of boron microalloyed steels, Mater. Sci. Eng. A, 480(2008), No. 1-2, p. 49. doi: 10.1016/j.msea.2007.06.067
      [11]
      M.G. Akben, T. Chandra, P. Plassiard, and J.J. Jonas, Dynamic precipitation and solute hardening in a titanium microalloyed steel containing three levels of manganese, Acta Metall., 32(1984), No. 4, p. 591. doi: 10.1016/0001-6160(84)90070-1
      [12]
      S.J. Chen, L.J. Li, Z.W. Peng, X.D. Huo, and H.B. Sun, On the correlation among continuous cooling transformations, interphase precipitation and strengthening mechanism in Ti-microalloyed steel, J. Mater. Res. Technol., 10(2021), p. 580. doi: 10.1016/j.jmrt.2020.12.048
      [13]
      R. Yoda, I. Tsukatani, T. Inoue, and T. Saito, Effect of chemical composition on recrystallization behavior and r-value in Ti-added ultra low carbon sheet steel, ISIJ Int., 34(1994), No. 1, p. 70. doi: 10.2355/isijinternational.34.70
      [14]
      M. Charleux, W.J. Poole, M. Militzer, and A. Deschamps, Precipitation behavior and its effect on strengthening of an HSLA-Nb/Ti steel, Metall. Mater. Trans. A, 32(2001), No. 7, p. 1635. doi: 10.1007/s11661-001-0142-6
      [15]
      C.F. Meng, Y.D. Wang, Y.H. Wei, B.Q. Shi, T.X. Cui, and Y.T. Wang, Strengthening mechanisms for Ti- and Nb–Ti-micro-alloyed high-strength steels, J. Iron Steel Res. Int., 23(2016), No. 4, p. 350. doi: 10.1016/S1006-706X(16)30056-5
      [16]
      Y.T. Chen, A.M. Guo, and P.H. Li, Nitride and carbonitride precipitation behavior in a Nb–Ti microalloyed extra low carbon HSLA steel, Heat Treat. Met., 32(2007), No. 9, p. 51.
      [17]
      E.O. Hall, The lüders deformation of mild steel, Proc. Phys. Soc. London Sect. B, 64(1951), No. 12, p. 1085. doi: 10.1088/0370-1301/64/12/109
      [18]
      N.J. Petch, The cleavage strength of polycrystals, J. Iron Steel Inst., 174(1953), p. 25.
      [19]
      W.B. Morrison, The effect of grain size on the stress–strain relationship in low-carbon steel, Trans. Am. Soc. Met., 59(1966), No. 4, p. 824.
      [20]
      A.T. Davenport, L.C. Brossard, and R.E. Miner, Precipitation in microalloyed high-strength low-alloy steels, JOM, 27(1975), No. 6, p. 21. doi: 10.1007/BF03355951
      [21]
      T. Gladman, D. Dulieu, and I.D. McIvor, Structure–property relationships in high-strength microalloyed steels, [in] Proc. of Symp. on Microalloying 75, New York, 1976.
      [22]
      Y. Tanaka, Progress in TMCP technology and expansion of its range of application, [in] ASME 2005 Pressure Vessels and Piping Conference, Denver, 2005, p. 515.
      [23]
      Z.H. Wu, W. Zheng, G.Q. Li, H. Matsuura, and F. Tsukihashi, Effect of inclusions’ behavior on the microstructure in Al–Ti deoxidized and magnesium-treated steel with different aluminum contents, Metall. Mater. Trans. B, 46(2015), No. 3, p. 1226. doi: 10.1007/s11663-015-0311-4
      [24]
      B. López and J.M. Rodriguez-Ibabe, Some metallurgical issues concerning austenite conditioning in Nb–Ti and Nb–Mo microalloyed steels processed by near-net-shape casting and direct rolling technologies, Metall. Mater. Trans. A, 48(2017), No. 6, p. 2801. doi: 10.1007/s11661-016-3727-9
      [25]
      Y.Z. Lou, D.L. Liu, X.P. Mao, and M.Z. Bai, Titanium carbonitrides in Ti-microalloyed steel produced by CSP process, Iron Steel., 45(2010), No. 2, p. 70.
      [26]
      J.M. Rodriguez-Ibabe, Thin slab direct rolling of microalloyed steels, Mater. Sci. Forum, 500-501(2005), p. 49. doi: 10.4028/www.scientific.net/MSF.500-501.49
      [27]
      C.Y. Chen, H.W. Yen, F.H. Kao, W.C. Li, C.Y. Huang, J.R. Yang, and S.H. Wang, Precipitation hardening of high-strength low-alloy steels by nanometer-sized carbides, Mater. Sci. Eng. A, 499(2009), No. 1-2, p. 162. doi: 10.1016/j.msea.2007.11.110
      [28]
      T.P. Wang, F.H. Kao, S.H. Wang, J.R. Yang, C.Y. Huang, and H.R. Chen, Isothermal treatment influence on nanometer-size carbide precipitation of titanium-bearing low carbon steel, Mater. Lett., 65(2011), No. 2, p. 396. doi: 10.1016/j.matlet.2010.10.022
      [29]
      H.W. Yen, C.Y. Huang, and J.R. Yang, Characterization of interphase-precipitated nanometer-sized carbides in a Ti–Mo-bearing steel, Scripta Mater., 61(2009), No. 6, p. 616. doi: 10.1016/j.scriptamat.2009.05.036
      [30]
      A.J. deArdo, Metallurgical basis for thermomechanical processing of microalloyed steels, Ironmaking Steelmaking, 28(2001), No. 2, p. 138. doi: 10.1179/030192301678055
      [31]
      J.H. Jang, C.H. Lee, Y.U. Heo, and D.W. Suh, Stability of (Ti,M)C (M = Nb, V, Mo and W) carbide in steels using first-principles calculations, Acta Mater., 60(2012), No. 1, p. 208. doi: 10.1016/j.actamat.2011.09.051
      [32]
      C. Leyens and M. Peters, Titanium and Titanium Alloys. Fundamentals and Applications, Willey-VCH, Weinheim, 2003.
      [33]
      A.D. McQuillan and M.K. McQuillan, Titanium, Butterworths Scientific Publications, London, 1956.
      [34]
      H.H. Read, Rutley’s Elements of Mineralogy, 25th ed., Thomas Murby & Co., London, 1953.
      [35]
      X.P. Mao, Titanium Microalloyed Steel, Metallurgical Industry Press, Beijing, 2016.
      [36]
      E. Orowan, Discussion on internal stresses, [in] Symposium on International Stresses in Metals and Alloys, Institute of Metals, London, 1948, p. 451.
      [37]
      X.P. Mao, X.J. Sun, Y.L. Kang, and Z.Y. Lin, Physical metallurgy for the titanium microalloyed strip produced by thin slab casting and rolling process, Acta Metall. Sin., 42(2006), No. 10, p. 1091.
      [38]
      M.L. Wang, G.G. Cheng, S.T. Qiu, P. Zhao, and Y. Gan, Behavior of precipitation containing titanium during solidification, J. Iron Steel Res. Int., 19(2007), No. 5, p. 44.
      [39]
      J.X. Chen, Manual of Chart and Data in Common Use of Steelmaking, Metallurgy Industry Press, Beijing, 1984.
      [40]
      J.I. Takamura and S Mizoguchi, Role of oxides in steel performance, [in] Proceeding of the 6th International Iron and Steel Congress, Nagoya, 1990, p. 591.
      [41]
      Z.Z. Liu and M. Kuwabara, Recent progress in oxide metallurgy technology and its application, Steelmaking, 23(2007), No. 4, p. 1.
      [42]
      K. Yamamoto, T. Hasegawa, and J.I. Takamura, Effect of boron on intra-granular ferrite formation in Ti-oxide bearing steels, ISIJ Int., 36(1996), No. 1, p. 80. doi: 10.2355/isijinternational.36.80
      [43]
      J.H. Shim, Y.W. Cho, S.H. Chung, J.D. Shim, and D.N. Lee, Nucleation of intragranular ferrite at Ti2O3 particle in low carbon steel, Acta Mater., 47(1999), No. 9, p. 2751. doi: 10.1016/S1359-6454(99)00114-7
      [44]
      L.N. Han, Y.P. Bao, J.H. Liu, and T.Q. Li, Research on nucleation mechanism of IGF of low carbon steel containing titanium, Wide Heavy Plate, 14(2008), No. 1, p. 1.
      [45]
      A. Takeuchi and A. Inoue, Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element, Mater. Trans., 46(2005), No. 12, p. 2817. doi: 10.2320/matertrans.46.2817
      [46]
      K. Inoue, I. Ohnuma, H. Ohtani, K. Ishida, and T. Nishizawa, Solubility product of TiN in austenite, ISIJ Int., 38(1998), No. 9, p. 991. doi: 10.2355/isijinternational.38.991
      [47]
      K. Narita, Physical chemistry of the groups IVa (Ti, Zr), Va (V, Nb, Ta) and the rare earth elements in steel, Trans. ISIJ, 15(1975), No. 3, p. 145. doi: 10.2355/isijinternational1966.15.145
      [48]
      M. Gómez, L. Rancel, P.P. Gómez, J.I. Robla, and S.F. Medina, Simplification of hot rolling schedule in Ti-microalloyed steels with optimised Ti/N ratio, ISIJ Int., 50(2010), No. 6, p. 868. doi: 10.2355/isijinternational.50.868
      [49]
      R. Kuziak, T. Bołd, and Y.W. Cheng, Microstructure control of ferrite–pearlite high strength low alloy steels utilizing microalloying additions, J. Mater. Process. Technol., 53(1995), No. 1-2, p. 255. doi: 10.1016/0924-0136(95)01983-L
      [50]
      S.Y. Lee, Y.J. Oh, and K.W. Yi, Effects of titanium and oxygen content on microstructure in low carbon steels, Mater. Trans., 43(2002), No. 3, p. 518. doi: 10.2320/matertrans.43.518
      [51]
      L.D. Xing, J.L. Guo, X. Li, Z.F. Zhang, M. Wang, Y.P. Bao, F.Z. Zeng, and B.T. Chen, Control of TiN precipitation behavior in titanium-containing micro-alloyed steel, Mater. Today Commun., 25(2020), art. No. 101292. doi: 10.1016/j.mtcomm.2020.101292
      [52]
      T. Liu, M.J. Long, D.F. Chen, H.M. Duan, L.T. Gui, S. Yu, J.S. Cao, H.B. Chen, and H.L. Fan, Effect of coarse TiN inclusions and microstructure on impact toughness fluctuation in Ti micro-alloyed steel, J. Iron Steel Res. Int., 25(2018), No. 10, p. 1043. doi: 10.1007/s42243-018-0149-5
      [53]
      J. Fu, J. Zhu, L. Di, F.S. Tong, D.L. Liu, and Y.L. Wang, Study on the precipitation behavior of TiN in the microalloyed steels, Acta Metall. Sin., 36(2000), No. 8, p. 801.
      [54]
      X. Yang, G.G. Cheng, M.L. Wang, Y.L. Li, Y.G. Wang, and P. Zhao, Precipitation and growth of titanium nitride during solidification of clean steel, J. Univ. Sci. Technol. Beijing, 10(2003), No. 5, p. 24.
      [55]
      S. Akamatsu, M. Hasebe, T. Senuma, Y. Matsumura, and O. Akisue, Thermodynamic calculation of solute carbon and nitrogen in Nb and Ti added extra-low carbon steels, ISIJ Int., 34(1994), No. 1, p. 9. doi: 10.2355/isijinternational.34.9
      [56]
      X.H. Yang, D. Vanderschueren, J. Dilewijns, C. Standaert, and Y. Houbaert, Solubility products of titanium sulphide and carbosulphide in ultra-low carbon steels, ISIJ Int., 36(1996), No. 10, p. 1286. doi: 10.2355/isijinternational.36.1286
      [57]
      J. Copreaux, H. Gaye, J. Henry, and S. Lanteri, Relation Précipitation–Propriétés Dans Les Aciers Sans Intersticiels Recuits En Continu, European Commission, Luxembourg, 1997.
      [58]
      H. Yu, X.Y. Xiong, Y.L. Kang, X. Liu, and Y. Fang, Simulation of precipitation behaviors of the precipitates in Ti-IF steel produced by TSCR process, Heat Treat. Met., 31(2006), No. 5, p. 45.
      [59]
      C.N. Jing, Z.C. Wang, F.T. Han, Y.H. Yi, and W.P. Zhang, Study on the precipitates of Ti-IF steel hot-rolled in ferrite region, Heat Treat. Met., 31(2006), No. 1, p. 79.
      [60]
      W.J. Liu, J.J. Jonas, D. Bouchard, and C.W. Bale, Gibbs energies of formation of TiS and Ti4C2S2 in austenite, ISIJ Int., 30(1990), No. 11, p. 985. doi: 10.2355/isijinternational.30.985
      [61]
      N. Yoshinaga, K. Ushioda, S. Akamatsu, and O. Akisue, Precipitation behavior of sulfides in Ti-added ultra low-carbon steels in austenite, ISIJ Int., 34(1994), No. 1, p. 24. doi: 10.2355/isijinternational.34.24
      [62]
      F.Y. Yan and X.G. Zhang, Application of Ti to automobile wheel steel and discussion on alloying technology, Iron Steel., 36(2001), No. 5, p. 47.
      [63]
      M.J. Whelan, On the kinetics of precipitate dissolution, Met. Sci. J., 3(1969), No. 1, p. 95. doi: 10.1179/msc.1969.3.1.95
      [64]
      K. Relander, Austenitzerfall Eines 0.18%C–2%Mo–Stahles in Temperaturbereich der Perlitstufe [Dissertation], Teknillinen Korkeakoulu, Helsinki, 1964.
      [65]
      T.N. Baker, Titanium microalloyed steels, Ironmaking Steelmaking, 46(2019), No. 1, p. 1. doi: 10.1080/03019233.2018.1446496
      [66]
      R.M. Smith and D.P. Dunne, Structural aspects of alloy carbonitride precipitation in microalloyed steel, Mater. Forum, 11(1988), p. 166.
      [67]
      H.W. Yen, P.Y. Chen, C.Y. Huang, and J.R. Yang, Interphase precipitation of nanometer-sized carbides in a titanium–molybdenum-bearing low-carbon steel, Acta Mater., 59(2011), No. 16, p. 6264. doi: 10.1016/j.actamat.2011.06.037
      [68]
      J.H. Jang, Y.U. Heo, C.H. Lee, H.K.D.H. Bhadeshia, and D.W. Suh, Interphase precipitation in Ti–Nb and Ti–Nb–Mo bearing steel, Mater. Sci. Technol., 29(2013), No. 3, p. 309. doi: 10.1179/1743284712Y.0000000131
      [69]
      W.B. Morrison and J.H. Woodhead, The influence of small niobium additions on mechanical properties of commercial mild steel, J. Iron Steel Inst., 201(1963), p. 43.
      [70]
      H.I. Aaronson, M.R. Plichta, G.W. Franti, and K.C. Russell, Precipitation at interphase boundaries, Metall. Trans. A, 9(1978), No. 3, p. 363. doi: 10.1007/BF02646386
      [71]
      J.M. Gray and R.B.G. Yeo, Columbium carbonitride precipitation in low-alloy steels with particular emphasis on precipitate-row formation, Trans. Am. Soc. Met., 61(1968), p. 255.
      [72]
      J. McCann and K.A. Ridal, High temperature decomposition of austenite in alloy steels, J. Iron Steel Inst., 202(1964), p. 191.
      [73]
      A.T. Davenport and R.W.K. Honeycombe, Precipitation of carbides at γ–α boundaries in alloy steels, Proc. R. Soc. London Ser. A, 322(1971), No. 1549, p. 191. doi: 10.1098/rspa.1971.0063
      [74]
      H.W. Yen, C.Y. Chen, T.Y. Wang, C.Y. Huang, and J.R. Yang, Orientation relationship transition of nanometre sized interphase precipitated TiC carbides in Ti bearing steel, Mater. Sci. Technol., 26(2010), No. 4, p. 421. doi: 10.1179/026708309X12512744154207
      [75]
      R. Okamoto, A. Borgenstam, and J. Ågren, Interphase precipitation in niobium-microalloyed steels, Acta Mater., 58(2010), No. 14, p. 4783. doi: 10.1016/j.actamat.2010.05.014
      [76]
      R.W.K. Honeycombe and R.F. Mehl, Transformation from austenite in alloy steels, Metall. Trans. A, 7(1976), No. 7, p. 915. doi: 10.1007/BF02644057
      [77]
      Y.W. Kim, S.G. Hong, Y.H. Huh, and C.S. Lee, Role of rolling temperature in the precipitation hardening characteristics of Ti–Mo microalloyed hot-rolled high strength steel, Mater. Sci. Eng. A, 615(2014), p. 255. doi: 10.1016/j.msea.2014.07.077
      [78]
      G.L. Dunlop, C.J. Carlsson, and G. Frimodig, Precipitation of VC in ferrite and pearlite during direct transformation of a medium carbon microalloyed steel, Metall. Trans. A, 9(1978), No. 2, p. 261. doi: 10.1007/BF02646709
      [79]
      A.D. Batte and R.W.K. Honeycombe, Precipitation of vanadium carbide in ferrite, J. Iron Steel Inst., 211(1973), No. 4, p. 284.
      [80]
      J.A. Todd, P. Li, and S.M. Copley, A new model for precipitation at moving interphase boundaries, Metall. Trans. A, 19(1988), No. 9, p. 2133. doi: 10.1007/BF02645038
      [81]
      P. Li and J.A. Todd, Application of a new model to the interphase precipitation reaction in vanadium steels, Metall. Trans. A, 19(1988), No. 9, p. 2139. doi: 10.1007/BF02645039
      [82]
      J.A. Todd and Y.J. Su, A mass transport theory for interphase precipitation with application to vanadium steels, Metall. Trans. A, 20(1989), No. 9, p. 1647. doi: 10.1007/BF02663198
      [83]
      J. Irvine and T.N. Baker, The influence of rolling variables on the strengthening mechanisms operating in niobium steels, Mater. Sci. Eng., 64(1984), No. 1, p. 123. doi: 10.1016/0025-5416(84)90079-X
      [84]
      X.P. Mao, J.X. Gao, and Y.Z. Chai, Development of thin slab casting and direct rolling process in China, Iron Steel, 49(2014), No. 7, p. 49.
      [85]
      S.F. Medina, M. Chapa, P. Valles, A. Quispe, and M.I. Vega, Influence of Ti and N contents on austenite grain control and precipitate size in structural steels, ISIJ Int., 39(1999), No. 9, p. 930. doi: 10.2355/isijinternational.39.930
      [86]
      E.J. Palmiere, C.I. Garcia, and A.J. De Ardo, Compositional and microstructural changes which attend reheating and grain coarsening in steels containing niobium, Metall. Mater. Trans. A, 25(1994), No. 2, p. 277. doi: 10.1007/BF02647973
      [87]
      Y. Funakawa, Mechanical properties of ultra fine particle dispersion strengthened ferritic steel, Mater. Sci. Forum, 706-709(2012), p. 2096. doi: 10.4028/www.scientific.net/MSF.706-709.2096
      [88]
      A.J. DeArdo, Niobium in modern steels, Int. Mater. Rev., 48(2003), No. 6, p. 371. doi: 10.1179/095066003225008833
      [89]
      P. Gordon and R.A. Vandermeer, Grain boundary migration, [in] Recrystallization, Grain Growth and Textures, American Society for Metals, Metals Park, Ohio, 1966, p. 205.
      [90]
      A.J. De Ardo, J.M. Gray, and L. Meyer, Fundamental metallurgy of niobium in steel, [in] H. Stuart, ed., Niobium - Proceedings of The International Symposium, San Francisco, CA, 1984, p. 685.
      [91]
      H.K.D.H. Bhadeshia, Interpretation of The Microstructure of Steels, University of Cambridge, Cambridge, 2008.
      [92]
      J.S. Kirkaldy and D. Venugopalan, Prediction of microstructure and hardenability in low alloy steels, [in] A.R. Marder and J.I. Goldstein, eds., The International Conference on Phase Transformation in Ferrous Alloys, Philadelphia, 1983, p. 125.
      [93]
      G.F.V. Voort and G.M. Lucas, Microstructural characterization of carburized steels, Heat Treat. Prog., 9(2009), No. 5, p. 37.
      [94]
      R.A. Farrar and P.L. Harrison, Acicular ferrite in carbon–manganese weld metals: An overview, J. Mater. Sci., 22(1987), No. 11, p. 3812. doi: 10.1007/BF01133327
      [95]
      G. Krauss and S.W. Thompson, Ferritic microstructures in continuously cooled low- and ultralow-carbon steels, ISIJ Int., 35(1995), No. 8, p. 937. doi: 10.2355/isijinternational.35.937
      [96]
      A. Ali and H.K.D.H. Bhadeshia, Nucleation of Widmanstätten ferrite, Mater. Sci. Technol., 6(1990), No. 8, p. 781. doi: 10.1179/mst.1990.6.8.781
      [97]
      H.K.D.H. Bhadeshia and J.W. Christian, Bainite in steels, Metall. Trans. A, 21(1990), No. 3, p. 767. doi: 10.1007/BF02656561
      [98]
      H.K.D.H. Bhadeshia and D.V. Edmonds, The mechanism of bainite formation in steels, Acta Metall., 28(1980), No. 9, p. 1265. doi: 10.1016/0001-6160(80)90082-6
      [99]
      J.Y. Choi, B.S. Seong, S.C. Baik, and H.C. Lee, Precipitation and recrystallization behavior in extra low carbon steels, ISIJ Int., 42(2002), No. 8, p. 889. doi: 10.2355/isijinternational.42.889
      [100]
      M.R. Toroghinejad and G. Dini, Effect of Ti-microalloy addition on the formability and mechanical properties of a low carbon (ST14) steel, Int. J. Iron Steel Soc. Iran, 3(2006), No. 2, p. 1.
      [101]
      D. Wu, F.M. Wang, J. Cheng, and C.R. Li, Effect of Nb and V on the continuous cooling transformation of undercooled austenite in Cr–Mo–V steel for brake discs, Int. J. Miner. Metall. Mater., 25(2018), No. 8, p. 892. doi: 10.1007/s12613-018-1638-z
      [102]
      X.L. Wan, K.M. Wu, G. Huang, R. Wei, and L. Cheng, In situ observation of austenite grain growth behavior in the simulated coarse-grained heat-affected zone of Ti-microalloyed steels, Int. J. Miner. Metall. Mater., 21(2014), No. 9, p. 878. doi: 10.1007/s12613-014-0984-8
      [103]
      Y.S. Yu, B. Hu, M.L. Gao, Z.J. Xie, X.Q. Rong, G. Han, H. Guo, and C.J. Shang, Determining role of heterogeneous microstructure in lowering yield ratio and enhancing impact toughness in high-strength low-alloy steel, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 816. doi: 10.1007/s12613-020-2235-5
      [104]
      Z.J. Xie, C.J. Shang, X.L. Wang, X.M. Wang, G. Han, and R.D.K. Misra, Recent progress in third-generation low alloy steels developed under M3 microstructure control, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 1. doi: 10.1007/s12613-019-1939-x
      [105]
      T. Kashima, S. Hashimoto, and Y. Mukai, 780 N/mm2 grade hot-rolled high-strength steel sheet for automotive suspension system, JSAE Rev., 24(2003), No. 1, p. 81. doi: 10.1016/S0389-4304(02)00248-5
      [106]
      T. Kashima and Y. Mukai, Development of 780 MPa class high strength hot rolled steel sheet with super high flange formability, R&D Kobe Steel Eng. Rep., 52(2002), No. 3, p. 19.
      [107]
      K. Kamibayashi, Y. Tanabe, Y. Takemoto, I. Shimizu, and T. Senuma, Influence of Ti and Nb on the strength–ductility–hole expansion ratio balance of hot-rolled low-carbon high-strength steel sheets, ISIJ Int., 52(2012), No. 1, p. 151. doi: 10.2355/isijinternational.52.151
      [108]
      J. Zhou, Y.L. Kang, X.P. Mao, Z.Y. Lin, L.J. Li, and W. Chen, Effect of Ti on the mechanical properties of high strength weathering steel, J. Univ. Sci. Technol. Beijing, 28(2006), No. 10, p. 926.
      [109]
      X.P. Mao, J.X. Gao, L.J. Li, Q.Y. Liu, Z.Y. Lin, and C.F. Xu, Development and research of 550 MPa high strength and high formability plate, Automob. Technol. Mater., 2006, No. 11, p. 1.
      [110]
      X.P. Mao, X.D. Huo, Q.Y. Liu, Y.L. Kang, Z.Y. Lin, H.Z. Zhuang, X.J. Sun, J. Zhou, and J.X. Gao, Research and application of microalloying technology based on thin slab casting and direct rolling process, [in] International Symposium on Thin Slab Continuous Casting and Rolling, Guangzhou, 2006.
      [111]
      J.X. Gao, X.P. Mao, Q.L. Chen, and L.J. Li, Microstructure and property of 700MPa Ti microalloyed high strength steel produced by EAF-CSP, Adv. Mater. Res., 287-290(2011), p. 961. doi: 10.4028/www.scientific.net/AMR.287-290.961
      [112]
      Q.L. Yong, Secondary Phases in Steels, Metallurgical Industry Press, Beijing, 2006.
      [113]
      E.J. Chun, H. Do, S. Kim, D.G. Nam, Y.H. Park, and N. Kang, Effect of nanocarbides and interphase hardness deviation on stretch-flangeability in 998 MPa hot-rolled steels, Mater. Chem. Phys., 140(2013), No. 1, p. 307. doi: 10.1016/j.matchemphys.2013.03.041
      [114]
      J.X. Lu and G.D. Wang, Study on the performance of carbonitride precipitation in Nb–Ti microalloyed steel, Iron Steel, 40(2005), No. 9, p. 69.
      [115]
      X.N. Wang, H.S. Di, and L.X. Du, Effects of deformation and cooling rate on nano-scale precipitation in hot-rolled ultra-high strength steel, Acta Metall. Sin., 48(2012), No. 5, p. 621.
      [116]
      X.N. Wang, L.X. Du, and H.S. Di, Study on fatigue property of new type hot-rolled nano precipitation strengthening ultra-high strength automobile strip, J. Mech. Eng., 48(2012), No. 22, p. 27. doi: 10.3901/JME.2012.22.027
      [117]
      X.N. Wang, L.X. Du, and H.S. Di, Austenitic transformation behavior of hot-rolled 590 MPa grade wheel wteel, J. Iron Steel Res., 25(2013), No. 4, p. 33.
      [118]
      X.N. Wang, L.X. Du, H.L. Zhang, and H.S. Di, Industrial trial of 780 MPa grade heavy-duty truck beams steels, J. Iron Steel Res., 23(2011), No. 5, p. 45.
      [119]
      Y. Funakawa and K. Seto, Coarsening behavior of nanometer-sized carbides in hot-rolled high strength sheet steel, Mater. Sci. Forum, 539-543(2007), p. 4813. doi: 10.4028/www.scientific.net/MSF.539-543.4813
      [120]
      Y. Huang, W.N. Liu, A.M. Zhao, J.K. Han, Z.G. Wang, and H.X. Yin, Effect of Mo content on the thermal stability of Ti–Mo-bearing ferritic steel, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 412. doi: 10.1007/s12613-020-2045-9
      [121]
      K. Zhang, Z.D. Li, X.J. Sun, Q.L. Yong, J.W. Yang, Y.M. Li, and P.L. Zhao, Development of Ti–V–Mo complex microalloyed hot-rolled 900-MPa-grade high-strength steel, Acta Metall. Sin. Engl. Lett., 28(2015), No. 5, p. 641. doi: 10.1007/s40195-015-0243-7
      [122]
      K. Zhang, Q.L. Yong, X.J. Sun, Z.D. Li, and P.L. Zhao, Effect of coiling temperature on micro-structure and mechanical properties of Ti–V–Mo complex microalloyed ultra-high strength steel, Acta Metall. Sin., 52(2016), No. 5, p. 371.

    Catalog


    • /

      返回文章
      返回