留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 4
Apr.  2022

图(11)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  3813
  • HTML全文浏览量:  630
  • PDF下载量:  261
  • 被引次数: 0
Hiroyuki Matsuura, Xiao Yang, Guangqiang Li, Zhangfu Yuan, and Fumitaka Tsukihashi, Recycling of ironmaking and steelmaking slags in Japan and China, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 739-749. https://doi.org/10.1007/s12613-021-2400-5
Cite this article as:
Hiroyuki Matsuura, Xiao Yang, Guangqiang Li, Zhangfu Yuan, and Fumitaka Tsukihashi, Recycling of ironmaking and steelmaking slags in Japan and China, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 739-749. https://doi.org/10.1007/s12613-021-2400-5
引用本文 PDF XML SpringerLink
特约综述

日本和中国钢铁行业炉渣回收技术研究与应用情况概述

  • 通讯作者:

    杨肖    E-mail: yangxiao@westlake.edu.cn

    Fumitaka Tsukihashi    E-mail: tsukihashif@nifty.com

文章亮点

  • (1) 概述了日本和中国钢铁行业炉渣排放和回收现状。
  • (2) 概述了日本在钢渣海洋利用领域的基础研究进展。
  • (3) 概述了中国在炉渣回收领域的主要产业化技术。
  • 钢铁生产过程产生大量的副产品炉渣,作为一种常见的工业废弃物,炉渣的妥善处理对于钢铁工业的可持续发展有至关重要的影响。日本和中国均在积极推动钢铁清洁生产,炉渣减量以及回收利用是重要的一环。日本钢铁工业起步较早,很早开始就重视炉渣回收技术的开发,在基础研究以及技术应用等方面投入较多,不仅开发了各种炉渣减量技术,还建立了各种以高炉铁渣或转炉钢渣用作原料的建筑材料制造工艺,基本上实现了炉渣的完全利用。然而由于日本经济发展缓慢,预期今后随着基础建设项目的减少,炉渣的全面回收将变得困难,因此探索炉渣的新用途是目前日本炉渣回收技术研究开发优先发展的领域。中国是全球最大的钢铁生产国,每年各类炉渣的产量超过1亿吨,尽管中国的炉渣处理与回收技术取得了一定的发展,但由于总量庞大,综合回收率尚处于低位,目前中国的炉渣回收技术开发的首要目标是提高利用率,现有技术和工艺的优化是研究的重心。本文概述了日本和中国钢铁行业炉渣排放和回收的现状,介绍了日本近年来的主要研究活动以及在钢渣海洋利用领域的最新基础研究进展,介绍了中国在炉渣回收领域的主要产业化技术以及应用情况,对两国面临的主要挑战以及今后的技术发展趋势进行了讨论。
  • Invited Review

    Recycling of ironmaking and steelmaking slags in Japan and China

    + Author Affiliations
    • The mass production of steel is inevitably accompanied by large quantities of slags. The treatment of ironmaking and steelmaking slags is a great challenge in the sustainable development of the steel industry. Japan and China are two major steel producing countries that have placed a large emphasis on developing new technologies to decrease slag emission or promote slag valorization. Slags are almost completely reused or recycled in Japan. However, due to stagnant infrastructural investments, future applications of slags in conventional sectors are expected to be difficult. Exploring new functions or applications of slags has become a research priority in Japan. For example, the utilization of steelmaking slags in offshore seabeds to create marine forests is under development. China is the top steel producer in the world. The utilization ratios of ironmaking and steelmaking slags have risen steadily in recent years, driven largely by technological advances. For example, hot stage processing of slags for materials as well as heat recovery techniques has been widely applied in steel plants with good results. However, increasing the utilization ratio of basic oxygen furnace slags remains a major challenge. Technological innovations in slag recycling are crucial for the steel industries in Japan and China. Here, the current status and developing trends of utilization technologies of slags in both countries are reviewed.
    • loading
    • [1]
      World Steel Association, World Steel in Figures 2021, World Steel Association, 2021, p. 7.
      [2]
      Nippon Slag Association, Annual Statistical Report of Iron and Steel Slag FY2020, Nippon Slag Association, 2021, p. 2.
      [3]
      S. Tonomura, Outline of Course 50, Energy Procedia, 37(2013), p. 7160. doi: 10.1016/j.egypro.2013.06.653
      [4]
      H. Tobo, Y. Ta, M. Kuwayama, Y. Hagio, K. Yabuta, H. Tozawa, T. Tanaka, K. Morita, H. Matsuura, and F. Tsukihashi, Development of continuous steelmaking slag solidification process suitable for sensible heat recovery, ISIJ Int., 55(2015), No. 4, p. 894. doi: 10.2355/isijinternational.55.894
      [5]
      T. Hamano, S. Fukagai, and F. Tsukihashi, Reaction mechanism between solid CaO and FeOx–CaO–SiO2–P2O5 slag at 1573 K, ISIJ Int., 46(2006), No. 4, p. 490. doi: 10.2355/isijinternational.46.490
      [6]
      S. Fukagai, T. Hamano, and F. Tsukihashi, Formation reaction of phosphate compound in multi phase flux at 1573 K, ISIJ Int., 47(2007), No. 1, p. 187. doi: 10.2355/isijinternational.47.187
      [7]
      R. Saito, H. Matsuura, K. Nakase, X. Yang, and F. Tsukihashi, Microscopic formation mechanisms of P2O5-containing phase at the interface between solid CaO and molten slag, Tetsu-to-Hagane, 95(2009), No. 3, p. 258. doi: 10.2355/tetsutohagane.95.258
      [8]
      X. Yang, H. Matsuura, and F. Tsukihashi, Formation behavior of phosphorous compounds at the interface between solid 2CaO·SiO2 and FeOx–CaO–SiO2–P2O5 slag at 1673K, Tetsu-to-Hagane, 95(2009), No. 3, p. 268. doi: 10.2355/tetsutohagane.95.268
      [9]
      X. Yang, H. Matsuura, and F. Tsukihashi, Condensation of P2O5 at the interface between 2CaO·SiO2 and CaO–SiO2–FeOx–P2O5 slag, ISIJ Int., 49(2009), No. 9, p. 1298. doi: 10.2355/isijinternational.49.1298
      [10]
      X. Yang, H. Matsuura, and F. Tsukihashi, Reaction behavior of P2O5 at the interface between solid 2CaO·SiO2 and liquid CaO–SiO2–FeOx–P2O5 slags saturated with solid 5CaO·SiO2·P2O5 at 1573 K, ISIJ Int., 50(2010), No. 5, p. 702. doi: 10.2355/isijinternational.50.702
      [11]
      X. Yang, H. Matsuura, and F. Tsukihashi, Dissolution behavior of solid 5CaO·SiO2·P2O5 in CaO–SiO2–FeOx slag, Mater. Trans., 51(2010), No. 6, p. 1094. doi: 10.2320/matertrans.M-M2010810
      [12]
      X. Gao, H. Matsuura, I. Sohn, W.L. Wang, D.J. Min, and F. Tsukihashi, Phase relationship of CaO–SiO2–FeO–5 mass pct P2O5 system with low oxygen partial pressure at 1673 K (1400°C), Metall. Mater. Trans. B, 43(2012), No. 4, p. 694. doi: 10.1007/s11663-012-9651-5
      [13]
      X. Gao, H. Matsuura, I. Sohn, W.L. Wang, D.J. Min, and F. Tsukihashi, Phase relationship for the CaO–SiO2–FeO–5 mass%P2O5 system with oxygen partial pressure of 10–8 atm at 1673 and 1623 K, Mater. Trans., 54(2013), No. 4, p. 544. doi: 10.2320/matertrans.M-M2013801
      [14]
      X. Gao, H. Matsuura, M. Miyata, and F. Tsukihashi, Phase equilibrium for the CaO–SiO2–FeO–5mass%P2O5–5mass%Al2O3 system for dephosphorization of hot metal pretreatment, ISIJ Int., 53(2013), No. 8, p. 1381. doi: 10.2355/isijinternational.53.1381
      [15]
      M. Zhong, H. Matsuura, and F. Tsukihashi, Activity of P2O5 in solid solution between di-calcium silicate and tri-calcium phosphate at 1823 and 1873 K, ISIJ Int., 55(2015), No. 11, p. 2283. doi: 10.2355/isijinternational.ISIJINT-2015-019
      [16]
      M. Zhong, H. Matsuura, and F. Tsukihashi, Activity of phosphorus pent-oxide and tri-calcium phosphate in 2CaO·SiO2−3CaO·P2O5 solid solution saturated with CaO, Mater. Trans., 56(2015), No. 8, p. 1192. doi: 10.2320/matertrans.M-M2015813
      [17]
      M. Zhong, H. Matsuura, and F. Tsukihashi, Thermodynamic properties of phosphorus oxide in the 2CaO·SiO2−3CaO·P2O5 solid solution saturated with MgO, Metall. Mater. Trans. B, 47(2016), No. 3, p. 1745. doi: 10.1007/s11663-016-0639-4
      [18]
      H. Matsuura, T. Hamano, M. Zhong, X. Gao, X. Yang, and F. Tsukihashi, Energy and resource saving of steelmaking process: Utilization of innovative multi-phase flux during dephosphorization process, JOM, 66(2014), No. 9, p. 1572. doi: 10.1007/s11837-014-1108-7
      [19]
      X.R. Zhang, H. Matsuura, and F. Tsukihashi, Dissolution mechanism of various elements into seawater for recycling of steelmaking slag, ISIJ Int., 52(2012), No. 5, p. 928. doi: 10.2355/isijinternational.52.928
      [20]
      H. Matsuura, X.R. Zhang, L.K. Zang, G.H. Zhang, and F. Tsukihashi, Dissolution mechanisms of steelmaking slags in sea water, Miner. Process. Extr. Metall., 126(2017), No. 1-2, p. 11. doi: 10.1080/03719553.2016.1263784
      [21]
      X.R. Zhang, H. Atsumi, H. Matsuura, and F. Tsukihashi, Influence of gluconic acid on dissolution of Si, P and Fe from steelmaking slag with different composition into seawater, ISIJ Int., 54(2014), No. 6, p. 1443. doi: 10.2355/isijinternational.54.1443
      [22]
      X.R. Zhang, H. Matsuura, and F. Tsukihashi, Enhancement of the dissolution of nutrient elements from steelmaking slag into seawater by gluconic acid, J. Sustainable Metall., 1(2015), No. 2, p. 134. doi: 10.1007/s40831-015-0013-9
      [23]
      T. Kawasaki and H. Matsuura, Influence of organic acid complex formation on the elution behavior of steelmaking slag amorphous phase into freshwater, Tetsu-to-Hagane, 107(2021), No. 1, p. 92. doi: 10.2355/tetsutohagane.TETSU-2020-067
      [24]
      X.R. Zhang, H. Matsuura, and F. Tsukihashi, Dissolution mechanisms of steelmaking slag–dredged soil mixture into seawater, J. Sustainable Metall., 2(2016), No. 2, p. 123. doi: 10.1007/s40831-015-0040-6
      [25]
      X. Yang, Y. Sakurai, Y. Hisaka, and F. Tsukihashi, Recycling of steelmaking slag in seawater as an iron supplier: Effects of slag composition, carbonation and usage of gluconic acid, Mater. Trans., 62(2021), No. 8, p. 1253. doi: 10.2320/matertrans.MT-M2020346
      [26]
      Y. Sakurai, X. Yang, Y. Hisaka, and F. Tsukihashi, Nutrient supply to seawater from steelmaking slag: The coupled effect of gluconic acid usage and slag carbonation, Metall. Mater. Trans. B, 51(2020), No. 3, p. 1039. doi: 10.1007/s11663-020-01805-z
      [27]
      Y.S. Lang, H. Matsuura, and F. Tsukihashi, Long-term dissolution behavior of steelmaking slag and its composite materials in seawater, J. Sustainable Metall., 3(2017), No. 4, p. 729. doi: 10.1007/s40831-017-0137-1
      [28]
      A. Hayashi, H. Tozawa, K. Shimada, K. Takahashi, R. Kaneko, F. Tsukihashi, R. Inoue, and T. Ariyama, Effects of the seaweed bed construction using the mixture of steelmaking slag and dredged soil on the growth of seaweeds, ISIJ Int., 51(2011), No. 11, p. 1919. doi: 10.2355/isijinternational.51.1919
      [29]
      Committee of Metallurgical Slags Development and Utilization, Application association of iron and steel scrap of China, Iron and Steel Scrap of China, 2017, No. 1, p. 47.
      [30]
      G.L. Zhu, J.L. Yang, Y.D. Hao, and S.B. Sun, Current status of ironmaking and steelmaking slag valorization of China in the 11th five years plan and the prospecting for the 12th five years plan, China Steel, 7(2011), p. 12.
      [31]
      L.F. Yang, Comprehensive Utilization Technology and Industrial Development of Iron and Steelmaking Slags, 2020 [2022-02-21]. https://huanbao.bjx.com.cn/news/20200108/1034826.shtml
      [32]
      H.F. Wang, C.X. Zhang, Y.H. Qi, X.T. Dai, and D.L. Yan, Present situation and development trend of blast furnace slag treatment, Iron Steel, 42(2007), No. 6, p. 83. doi: 10.13228/j.boyuan.issn0449-749x.2007.06.019
      [33]
      Q.F. Zhang, Q.W. Mao, G.Y. Liu, K. Wang, and J. Chen, Features and application of technologies used in Shougang Jingtang No. 3 BF, Steelmaking, 40(2021), No. 2, p. 26.
      [34]
      J.H. Dong, W. Wang, and C.K. Gao, Research on new seawater desalination technology using waste heat recycled from washing slag water, China Metall., 22(2012), No. 10, p. 51. doi: 10.13228/j.boyuan.issn1006-9356.2012.10.001
      [35]
      G.Q. Li, M.X. Guo, Z. Zhang, and H.W. Ni, Current development and fundamental researches of ironmaking and steelmaking slag valorisation in China, [in] 2014 Japan Iron and Steel Association Spring Conference, Tokyo, 2014, p. 135.
      [36]
      S. Jahanshahi, D.S. Xie, Y.H. Pan, P. Ridgeway, and J. Mathieson, Dry slag granulation with integrated heat recover, [in] 1st International Conference on Energy Efficiency and CO2 Reduction in the Steel Industry (EECR Steel 2011), Düsseldorf, 2011, p. 1.
      [37]
      W.J. Duan, X.J. Lv, and Z. Li, A review of research progress of centrifugal granulation of blast furnace slag, J. Mater. Metall., 19(2020), No. 2, p. 79. doi: 10.14186/j.cnki.1671-6620.2020.02.001
      [38]
      J. Chen, Dry granulation and waste heat recovery technology for metallurgical molten slags, [in] Proceedings of 2016 China Technology on Metallurgical Energy and Environmental Protection, Beijing, 2016, p. 54.
      [39]
      G. Li, Slag valorisation in China: An overview, [in] Proceedings of the First International Slag Valorisation Symposium, Leuven, 2009, p. 165.
      [40]
      J.H. Guan, The development of technology and its characteristic for BSSF processing, Metall. Collect., 1(2005), p. 31. doi: 10.19537/j.cnki.2096-2789.2005.01.011
      [41]
      J. Cui,Y.L. Xiao,Y. Liu,H. Chen, and Y.Q. Li, Baosteel’s slag short flow process for molten steelmaking slag treatment and its application, Baosteel Tech. Res., 2(2008), No. 3, p. 54.
      [42]
      X.B. Wang, M.B. Zhang, and S. Li, Research and application of BSSF stainless steelmaking slag treatment technology, Baosteel Technol., 2020, No. 1, p. 73.
      [43]
      Y. Sun, J. Chen, and Z. Zhang, Biomass gasification using the waste heat from high temperature slags in a mixture of CO2 and H2O, Energy, 167(2019), p. 688. doi: 10.1016/j.energy.2018.11.019
      [44]
      Y. Sun, S. Sridhar, L. Liu, X. Wang, and Z. Zhang, Integration of coal gasification and waste heat recovery from high temperature steel slags: an emerging strategy to emission reduction, Sci. Rep., 5(2015), p. 16591. doi: 10.1038/srep16591
      [45]
      W. Chen, M. Wang, L. Liu, H. Wang, D. Min, and X. Wang, Three-stage method energy–mass coupling high-efficiency utilization process of high-temperature molten steel slag, Metall. Mater. Trans. B, 52(2021), p. 3004. doi: 10.1007/s11663-021-02213-7
      [46]
      M. Zou, Y. Shen, and J. Liu, Review on application of steel slag powder in cement-based materials, Bull. Chin. Ceram. Soc., 40(2021), p. 2964. doi: 10.16552/j.cnki.issn1001-1625.20210616.001
      [47]
      E. Tian, Z. Zhuang, H. Kang, and Y. Lian, Research on mechanical properties of steel slag powder road concrete, Concrete, 383(2021), p. 145. doi: 10.3969/j.issn.1002-3550.2021.09.030
      [48]
      F. He, Y. Fang, J.L. Xie and J. Xie, Fabrication and characterization of glass–ceramics materials developed from steel slag waste, Mater. Des., 42(2012), p. 198. doi: 10.1016/j.matdes.2012.05.033
      [49]
      Y. Li, W. Tang, H. Sheng, Y. Yang, and A. Mclean, Generation of pyroxene-based porous ceramics from steel refining slag, ISIJ Int., 61(2021), p. 2041. doi: 10.2355/isijinternational.ISIJINT-2021-043
      [50]
      C. Du, Y. Yu, L. Jiang, and J. Yu, Efficient extraction of phosphate from dephosphorization slag by hydrochloric acid leaching, J. Clean. Prod., 332(2022), art. No. 130087. doi: 10.1016/j.jclepro.2021.130087
      [51]
      X. Yang and T. Nohira, A new concept for producing white phosphorus: Electrolysis of dissolved phosphate in molten chloride, ACS Sustainable Chem. Eng., 8(2020), p. 13784. doi: 10.1021/acssuschemeng.0c04796

    Catalog


    • /

      返回文章
      返回