留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 4
Apr.  2022

图(8)

数据统计

分享

计量
  • 文章访问数:  2030
  • HTML全文浏览量:  215
  • PDF下载量:  61
  • 被引次数: 0
Kevin Huang, Mixed ion and electron transport theory and application in solid oxide conductors, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 870-875. https://doi.org/10.1007/s12613-021-2401-4
Cite this article as:
Kevin Huang, Mixed ion and electron transport theory and application in solid oxide conductors, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 870-875. https://doi.org/10.1007/s12613-021-2401-4
引用本文 PDF XML SpringerLink
特约综述

混合离子电子传输理论及其在固体氧化物导体中的应用

  • 通讯作者:

    Kevin Huang    E-mail: huang46@cec.sc.edu

  • 混合离子电子导体(MIECs)作为一种重要的电催化剂,广泛应用于各类电化学反应装置中,如可逆固体氧化物燃料电池,可充放电的金属–空气电池以及透氧膜等。MIECs可同时传导离子和电子,是其具有电催化活性的关键。为了开发高性能混合离子电子导体,我们需要深入理解该类材料内在的传导机制。本文将基于不可逆过程热力学,系统介绍传统的离子/电子传输理论,并简要综述该理论在具有氧空位缺陷及空穴/电子导电性的金属氧化物中的应用。本文将以CeO2-基和LaCrO3-基氧化物材料体系的研究为主,简述离子/电子传输理论的应用实例,如预测混合离子电子导体中的氧分压梯度分布,电化学离子/电子泄漏电流,以及外部负载电流对泄漏电流的影响。
  • Invited Review

    Mixed ion and electron transport theory and application in solid oxide conductors

    + Author Affiliations
    • Mixed ions and electron conductors (MIECs) are an important family of electrocatalysts for electrochemical devices, such as reversible solid oxide cells, rechargeable metal–air batteries, and oxygen transport membranes. Concurrent ionic and electronic transports in these materials play a key role in electrocatalytic activity. An in-depth fundamental understanding of the transport phenomena is critically needed to develop better MIECs. In this brief review, we introduced generic ionic and electronic transport theory based on irreversible thermodynamics and applied it to practical oxide-based materials with oxygen vacancies and electrons/holes as the predominant defects. Two oxide systems, namely CeO2-based and LaCrO3-based materials, are selected as case studies to illustrate the utility of the transport theory in predicting oxygen partial pressure distribution across MIECs, electrochemical electronic/ionic leakage currents, and the effects of external load current on the leakage currents.
    • loading
    • [1]
      S.D. Ebbesen, S.H. Jensen, A. Hauch, and M.B. Mogensen, High temperature electrolysis in alkaline cells, solid proton conducting cells, and solid oxide cells, Chem. Rev., 114(2014), No. 21, p. 10697. doi: 10.1021/cr5000865
      [2]
      C.L. Wang, Y.C. Yu, J.J. Niu, Y.X. Liu, D. Bridges, X.Q. Liu, J. Pooran, Y.F. Zhang, and A.M. Hu, Recent progress of metal–air batteries—A mini review, Appl. Sci., 9(2019), No. 14, art. No. 2787. doi: 10.3390/app9142787
      [3]
      Q.Y. Jiang, S. Faraji, D.A. Slade, and S.M. Stagg-Williams, A review of mixed ionic and electronic conducting ceramic membranes as oxygen sources for high-temperature reactors, Membr. Sci. Technol., 14(2011), p. 235.
      [4]
      L. Heyne, Electrochemistry of mixed ionic-electronic conductors, [in] S. Geller, ed., Solid Electrolytes, Springer-Verlag Berlin Heidelberg, New York, 1977, p. 169..
      [5]
      C. Wagner, Beitrag zur theorie des anlaufvorgangs, Z. Phys. Chem., 21B(1933), No. 1, p. 25. doi: 10.1515/zpch-1933-2105
      [6]
      S.R. De Groot, Thermodynamics of Irreversible Processes, North-Holland Publication Company, Amsterdam, 1951.
      [7]
      H. Rickert, Electrochemistry of Solids—An Introduction, Springer-Verlag Berlin Heidelberg, New York, 1982, p. 79.
      [8]
      J. Maier, Physical Chemistry of Ionic Materials: Ions and Electrons in Solids, John Wiley & Sons Ltd, Chichester, 2004, p. 294.
      [9]
      G.E. Murch, The haven ratio in fast ionic conductors, Solid State Ionics, 7(1982), No. 3, p. 177. doi: 10.1016/0167-2738(82)90050-9
      [10]
      N.S. Choudhury and J.W. Patterson, Performance characteristics of solid electrolytes under steady-state conditions, J. Electrochem. Soc., 118(1971), No. 9, art. No. 1398. doi: 10.1149/1.2408337
      [11]
      I. Riess, Current–voltage relation and charge distribution in mixed ionic electronic solid conductors, J. Phys. Chem. Solids, 47(1986), No. 2, p. 129. doi: 10.1016/0022-3697(86)90121-6
      [12]
      A. Mineshige, T. Yasui, N. Ohmura, M. Kobune, S. Fujii, M. Inaba, and Z. Ogumi, Oxygen chemical potential and mixed conduction in doped ceria under influence of oxygen partial pressure gradient, Solid State Ionics, 152-153(2002), p. 493. doi: 10.1016/S0167-2738(02)00378-8
      [13]
      B.C.H. Steele, Appraisal of Ce1−yGdyO2−y/2 electrolytes for IT-SOFC operation at 500°C, Solid State Ionics, 129(2000), No. 1-4, p. 95. doi: 10.1016/S0167-2738(99)00319-7
      [14]
      B. Dalslet, P. Blennow, P.V. Hendriksen, N. Bonanos, D. Lybye, and M. Mogensen, Assessment of doped ceria as electrolyte, J. Solid State Electrochem., 10(2006), No. 8, p. 547. doi: 10.1007/s10008-006-0135-x
      [15]
      I. Yasuda and T. Hikita, Electrical conductivity and defect structure of calcium-doped lanthanum chromites, J. Electrochem. Soc., 140(1993), No. 6, p. 1699. doi: 10.1149/1.2221626
      [16]
      I. Yasuda and M. Hishinuma, Electrochemical properties of doped lanthanum chromites as interconnectors for solid oxide fuel cells, J. Electrochem. Soc., 143(1996), No. 5, p. 1583. doi: 10.1149/1.1836683

    Catalog


    • /

      返回文章
      返回