Cite this article as:

Kevin Huang, Mixed ion and electron transport theory and application in solid oxide conductors, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp.870-875. https://dx.doi.org/10.1007/s12613-021-2401-4
Kevin Huang, Mixed ion and electron transport theory and application in solid oxide conductors, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp.870-875. https://dx.doi.org/10.1007/s12613-021-2401-4
引用本文 PDF XML SpringerLink

混合离子电子传输理论及其在固体氧化物导体中的应用

摘要: 混合离子电子导体(MIECs)作为一种重要的电催化剂,广泛应用于各类电化学反应装置中,如可逆固体氧化物燃料电池,可充放电的金属–空气电池以及透氧膜等。MIECs可同时传导离子和电子,是其具有电催化活性的关键。为了开发高性能混合离子电子导体,我们需要深入理解该类材料内在的传导机制。本文将基于不可逆过程热力学,系统介绍传统的离子/电子传输理论,并简要综述该理论在具有氧空位缺陷及空穴/电子导电性的金属氧化物中的应用。本文将以CeO2-基和LaCrO3-基氧化物材料体系的研究为主,简述离子/电子传输理论的应用实例,如预测混合离子电子导体中的氧分压梯度分布,电化学离子/电子泄漏电流,以及外部负载电流对泄漏电流的影响。

 

Mixed ion and electron transport theory and application in solid oxide conductors

Abstract: Mixed ions and electron conductors (MIECs) are an important family of electrocatalysts for electrochemical devices, such as reversible solid oxide cells, rechargeable metal–air batteries, and oxygen transport membranes. Concurrent ionic and electronic transports in these materials play a key role in electrocatalytic activity. An in-depth fundamental understanding of the transport phenomena is critically needed to develop better MIECs. In this brief review, we introduced generic ionic and electronic transport theory based on irreversible thermodynamics and applied it to practical oxide-based materials with oxygen vacancies and electrons/holes as the predominant defects. Two oxide systems, namely CeO2-based and LaCrO3-based materials, are selected as case studies to illustrate the utility of the transport theory in predicting oxygen partial pressure distribution across MIECs, electrochemical electronic/ionic leakage currents, and the effects of external load current on the leakage currents.

 

/

返回文章
返回