留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 11
Nov.  2022

图(9)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  817
  • HTML全文浏览量:  292
  • PDF下载量:  66
  • 被引次数: 0
Xiang Fang, Wei Wang, François Brisset, Anne-Laure Helbert,  and Thierry Baudin, Microstructure and texture evolution of nonoriented silicon steel during the punching process, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp. 2064-2071. https://doi.org/10.1007/s12613-021-2404-1
Cite this article as:
Xiang Fang, Wei Wang, François Brisset, Anne-Laure Helbert,  and Thierry Baudin, Microstructure and texture evolution of nonoriented silicon steel during the punching process, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp. 2064-2071. https://doi.org/10.1007/s12613-021-2404-1
引用本文 PDF XML SpringerLink
研究论文

无取向硅钢冲裁过程中的组织和织构演变

  • 通讯作者:

    王玮    E-mail: wei.wang@whut.edu.cn

文章亮点

  • (1) 详细研究了无取向硅钢冲裁边缘的形变机制及组织演变。
  • (2) 系统地研究了无取向硅钢冲裁边缘的织构演变及分布。
  • (3) 明确了无取向硅钢冲裁边缘的形变机制对其织构演变的影响规律。
  • 无取向硅钢是电机铁芯所需要的重要软磁材料。目前,生产过程中主要借助冲裁工艺制备电机铁芯的叠片。冲裁工艺会使得无取向硅钢的切割边缘产生形变,从而导致其织构发生演变,进而影响叠片的磁性能。本文旨在研究无取向硅钢冲裁边缘的塑性形变机制,组织及织构演变机理。为了方便研究,本文首先借助钝化模具制备了在冲裁边缘具备较宽变形区域的圆形样品。随后,沿板材轧制方向和横向在圆形样品的冲裁边缘分别选取了一个观测点,并借助电子背散射技术(EBSD)分析了两个观测点的形变机制,组织和织构演变。研究表明两个观测点的形变机制和组织演变相似。由于形变机制相同,样品冲裁边缘两个观测点的织构演变规律也相似。钝化模具使得样品冲裁边缘明显的分为无弯曲,连续弯曲和整体弯曲三个区域。无弯曲和连续弯曲区域的主要形变机制是位错滑移,这一机制促进了{221}纤维织构的形成。整体弯曲区域主要处于冲裁边缘的端部,该区域的形变机制包括位错滑移和微观剪切带的形成,其中微观剪切带的形成导致该区域的织构由原始{111}纤维织构发生向{110}纤维织构的转变。
  • Research Article

    Microstructure and texture evolution of nonoriented silicon steel during the punching process

    + Author Affiliations
    • The iron core of a motor is mainly manufactured from rolled nonoriented silicon steel using a punching process that leads to deformation and texture evolution at the cutting edge. According to this process, circular samples of nonoriented silicon steel were prepared by punching using blunt punch tools. In this work, two positions along the rolling and transverse directions at the cutting edge were analyzed. The main mechanisms of deformation for both positions are dislocation slip and formation of shear bands. These two mechanisms lead to similar texture evolutions for both positions. The dislocation slip leads to the formation of the $ \left\{221\right\}\left\langle{uvw}\right\rangle $ component in the unbending area (200 µm away from the cutting edge) and intermediate continuum-bent area. Additionally, the evolution of the texture from the $ \left\{111\right\} $ γ fiber to the $ \left\{110\right\} $ fiber was observed at the extremity of the cutting edge with the formation of shear bands.
    • loading
    • [1]
      K. Honda and S. Kaya, On magnetization of single crystals of iron, Sci. Rep. Tohoku Imp. Univ., 15(1926), p. 721.
      [2]
      H.T. Liu, Z.Y. Liu, C.G. Li, G.M. Cao, and G.D. Wang, Solidification structure and crystallographic texture of strip casting 3 wt.% Si non-oriented silicon steel, Mater. Charact., 62(2011), No. 5, p. 463. doi: 10.1016/j.matchar.2011.02.010
      [3]
      Y.B. Xu, Y.X. Zhang, Y. Wang, et al., Evolution of cube texture in strip-cast non-oriented silicon steels, Scripta Mater., 87(2014), p. 17. doi: 10.1016/j.scriptamat.2014.05.019
      [4]
      M. Mehdi, Y.L. He, E.J. Hilinski, and A. Edrisy, Effect of skin pass rolling reduction rate on the texture evolution of a non-oriented electrical steel after inclined cold rolling, J. Magn. Magn. Mater., 429(2017), p. 148. doi: 10.1016/j.jmmm.2017.01.020
      [5]
      M. Sanjari, Y.L. He, E.J. Hilinski, S. Yue, and L.A.I. Kestens, Texture evolution during skew cold rolling and annealing of a non-oriented electrical steel containing 0.9wt% silicon, J. Mater. Sci., 52(2017), No. 6, p. 3281. doi: 10.1007/s10853-016-0616-y
      [6]
      M. Mehdi, Y.L. He, E.J. Hilinski, L.A.I. Kestens, and A. Edrisy, The evolution of cube ({001}<100>) texture in non-oriented electrical steel, Acta Mater., 185(2020), p. 540. doi: 10.1016/j.actamat.2019.12.024
      [7]
      H.T. Jiao, Y.B. Xu, H.J. Xu, et al., Influence of hot deformation on texture and magnetic properties of strip cast non-oriented electrical steel, J. Magn. Magn. Mater., 462(2018), p. 205. doi: 10.1016/j.jmmm.2018.05.015
      [8]
      H.Z. Li, H.T. Liu, Z.Y. Liu, H.H. Lu, H.Y. Song, and G.D. Wang, Characterization of microstructure, texture and magnetic properties in twin-roll casting high silicon non-oriented electrical steel, Mater. Charact., 88(2014), p. 1. doi: 10.1016/j.matchar.2013.11.014
      [9]
      H.T. Liu, Z.Y. Liu, Y. Sun, et al., Formation of {001}<510> recrystallization texture and magnetic property in strip casting non-oriented electrical steel, Mater. Lett., 81(2012), p. 65. doi: 10.1016/j.matlet.2012.04.081
      [10]
      Y.H. Sha, C. Sun, F. Zhang, et al., Strong cube recrystallization texture in silicon steel by twin-roll casting process, Acta Mater., 76(2014), p. 106. doi: 10.1016/j.actamat.2014.05.020
      [11]
      N. Zhang, P. Yang, and W.M. Mao, Through process texture evolution of new thin-gauge non-oriented electrical steels with high permeability, J. Magn. Magn. Mater., 397(2016), p. 125. doi: 10.1016/j.jmmm.2015.08.066
      [12]
      G. Sahoo, C.D. Singh, M. Deepa, S.K. Dhua, and A. Saxena, Recrystallization behaviour and texture of non-oriented electrical steels, Mater. Sci. Eng. A, 734(2018), p. 229. doi: 10.1016/j.msea.2018.07.072
      [13]
      F. Ossart, E. Hug, O. Hubert, C. Buvat and R. Billardon, Effect of punching on electrical steels: Experimental and numerical magneto-mechanical analyses, [in] the 2000 IEEE International Magnetics Conference (INTERMAG), Toronto, ON, 2000.
      [14]
      H.A. Weiss, N. Leuning, S. Steentjes, et al., Influence of shear cutting parameters on the electromagnetic properties of non-oriented electrical steel sheets, J. Magn. Magn. Mater., 421(2017), p. 250. doi: 10.1016/j.jmmm.2016.08.002
      [15]
      A. Saleem, D. Goldbaum, N. Brodusch, R. Gauvin, and R.R. Chromik, Microstructure and mechanical property connections for a punched non-oriented electrical steel lamination, Mater. Sci. Eng. A, 725(2018), p. 456. doi: 10.1016/j.msea.2018.04.054
      [16]
      T. Baudin and R. Penelle, Determination of the total texture function from individual orientation measurements by electron backscattering pattern, Metall. Mater. Trans. A, 24(1993), No. 10, p. 2299. doi: 10.1007/BF02648603
      [17]
      D.P. Field, L.T. Bradford, M.M. Nowell, and T.M. Lillo, The role of annealing twins during recrystallization of Cu, Acta Mater., 55(2007), No. 12, p. 4233. doi: 10.1016/j.actamat.2007.03.021
      [18]
      J.K. Mackenzie, Second paper on statistics associated with the random disorientation of cubes, Biometrika, 45(1958), No. 1-2, p. 229. doi: 10.1093/biomet/45.1-2.229
      [19]
      J.K. Mason and C.A. Schuh, The generalized Mackenzie distribution: Disorientation angle distributions for arbitrary textures, Acta Mater., 57(2009), No. 14, p. 4186. doi: 10.1016/j.actamat.2009.05.016
      [20]
      X. Jin, B.Q. Fu, C.L. Zhang, and W. Liu, Evolution of the texture and mechanical properties of 2060 alloy during bending, Int. J. Miner. Metall. Mater., 22(2015), No. 9, p. 966. doi: 10.1007/s12613-015-1156-1
      [21]
      T. Nguyen-Minh, J.J. Sidor, R.H. Petrov, and L.A.I. Kestens, Shear banding and its contribution to texture evolution in rotated Goss orientations of BCC structured materials, IOP Conf. Ser.: Mater. Sci. Eng., 82(2015), art. No. 012023. doi: 10.1088/1757-899X/82/1/012023
      [22]
      D. Dorner and S. Zaefferer, Microstructure and texture of shear bands in cold rolled silicon steel single crystals of Goss orientation, Solid State Phenom., 105(2005), p. 239. doi: 10.4028/www.scientific.net/SSP.105.239

    Catalog


    • /

      返回文章
      返回