Cite this article as:

Yang You, Jiabao Guo, Gang Li, Zhuang Zheng, Yong Li, and Xuewei Lü, Effects of process parameters on the growth behavior and granule size distribution of iron ore mixtures in a novel high-shear granulator, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp.2152-2161. https://dx.doi.org/10.1007/s12613-021-2407-y
Yang You, Jiabao Guo, Gang Li, Zhuang Zheng, Yong Li, and Xuewei Lü, Effects of process parameters on the growth behavior and granule size distribution of iron ore mixtures in a novel high-shear granulator, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp.2152-2161. https://dx.doi.org/10.1007/s12613-021-2407-y
引用本文 PDF XML SpringerLink

新型高剪切制粒工艺参数对铁矿石颗粒长大行为及粒度分布的影响

摘要: 随着优质铁矿资源的减少,一些低品位铁矿逐渐进入人们的视野。这类矿石由于经历了选矿过程,导致其粒度较小。在传统的圆筒制粒工艺中,水分难以在细粒度的精矿表面均匀分布,从而导致制得的准颗粒粒度偏析严重,影响了烧结料层的透气性。为了解决这个问题,本文提出了一种新型的卧式高剪切制粒工艺,将颗粒在传统圆筒中的二维受力变化为轴向和径向的三维受力,从而提高烧结原料颗粒的混匀和制粒效果。本文首先分析了烧结混合料颗粒在新型高剪切制粒机中的长大过程以及形成的准颗粒结构,发现准颗粒粒度先随制粒时间的增加逐渐长大,但制粒时间超过35 min后粒度几乎保持稳定。准颗粒结构主要分为三类:无核颗粒、单核颗粒和多核颗粒,其中单核颗粒是最常见的准颗粒结构。水分促进了颗粒的聚结长大,当前原料条件下8.8wt%的水分能够得到最优的制粒效果。增加形核颗粒的比例虽然导致准颗粒粒度有所增加,但是实际的颗粒长大指数却是逐渐降低。同时,增加精矿比例也会导致准颗粒粒度以及料层透气性等指标变差。尽管如此,高剪切制粒工艺的制粒效果仍优于传统圆筒制粒工艺。

 

Effects of process parameters on the growth behavior and granule size distribution of iron ore mixtures in a novel high-shear granulator

Abstract: This work proposes a novel horizontal high-shear granulator for iron ore granulation before sintering process. The granulation behavior such as growth process and structure of granules were firstly analyzed, followed by the effects of operation conditions such as water content, initial particle size distribution, and the concentrate ratio. The results show that the granule size increased significantly with increasing the granulation time, and the structure of granule can be divided into three types: non-nuclei, single-nuclei, and multi-nuclei. Water promotes the coalescence and growth of particles, and a better granulation performance was obtained at the water content of 8.8wt% under the current raw material conditions. Increasing the nuclei particle ratio led to an increase in average size of granules and permeability of the granules bed, but a decrease in growth index. Besides, with increasing of concentrate ratio, granulation performance such as granule size, bed permeability, and uniformity became worse.

 

/

返回文章
返回