留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

图(12)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  199
  • HTML全文浏览量:  95
  • PDF下载量:  20
  • 被引次数: 0
Yang You, Jiabao Guo, Gang Li, Zhuang Zheng, Yong Li, and Xuewei Lü, Effects of process parameters on the growth behavior and granule size distribution of iron ore mixtures in a novel high-shear granulator, Int. J. Miner. Metall. Mater.,(2022). https://doi.org/10.1007/s12613-021-2407-y
Cite this article as:
Yang You, Jiabao Guo, Gang Li, Zhuang Zheng, Yong Li, and Xuewei Lü, Effects of process parameters on the growth behavior and granule size distribution of iron ore mixtures in a novel high-shear granulator, Int. J. Miner. Metall. Mater.,(2022). https://doi.org/10.1007/s12613-021-2407-y
引用本文 PDF XML SpringerLink
研究论文

新型高剪切制粒工艺参数对铁矿石颗粒长大行为及粒度分布的影响

  • 通讯作者:

    游洋    E-mail: youyang@cqu.edu.cn

    吕学伟    E-mail: lvxuewei@cqu.edu.cn

文章亮点

  • (1) 提出了一种新型的卧式高剪切制粒工艺。
  • (2) 系统地分析了颗粒长大过程以及颗粒结构。
  • (3) 阐明了水分、初始粒度分布以及精矿比例对制粒效果的影响规律。
  • 随着优质铁矿资源的减少,一些低品位铁矿逐渐进入人们的视野。这类矿石由于经历了选矿过程,导致其粒度较小。在传统的圆筒制粒工艺中,水分难以在细粒度的精矿表面均匀分布,从而导致制得的准颗粒粒度偏析严重,影响了烧结料层的透气性。为了解决这个问题,本文提出了一种新型的卧式高剪切制粒工艺,将颗粒在传统圆筒中的二维受力变化为轴向和径向的三维受力,从而提高烧结原料颗粒的混匀和制粒效果。本文首先分析了烧结混合料颗粒在新型高剪切制粒机中的长大过程以及形成的准颗粒结构,发现准颗粒粒度先随制粒时间的增加逐渐长大,但制粒时间超过35 min后粒度几乎保持稳定。准颗粒结构主要分为三类:无核颗粒、单核颗粒和多核颗粒,其中单核颗粒是最常见的准颗粒结构。水分促进了颗粒的聚结长大,当前原料条件下8.8wt%的水分能够得到最优的制粒效果。增加形核颗粒的比例虽然导致准颗粒粒度有所增加,但是实际的颗粒长大指数却是逐渐降低。同时,增加精矿比例也会导致准颗粒粒度以及料层透气性等指标变差。尽管如此,高剪切制粒工艺的制粒效果仍优于传统圆筒制粒工艺。
  • Research Article

    Effects of process parameters on the growth behavior and granule size distribution of iron ore mixtures in a novel high-shear granulator

    + Author Affiliations
    • This work proposes a novel horizontal high-shear granulator for iron ore granulation before sintering process. The granulation behavior such as growth process and structure of granules were firstly analyzed, followed by the effects of operation conditions such as water content, initial particle size distribution, and the concentrate ratio. The results show that the granule size increased significantly with increasing the granulation time, and the structure of granule can be divided into three types: non-nuclei, single-nuclei, and multi-nuclei. Water promotes the coalescence and growth of particles, and a better granulation performance was obtained at the water content of 8.8wt% under the current raw material conditions. Increasing the nuclei particle ratio led to an increase in average size of granules and permeability of the granules bed, but a decrease in growth index. Besides, with increasing of concentrate ratio, granulation performance such as granule size, bed permeability, and uniformity became worse.
    • *These authors contributed equally to this work.
    • loading
    • [1]
      C. Wang, C.Y. Xu, Z.J. Liu, Y.Z. Wang, R.R. Wang, and L.M. Ma, Effect of organic binders on the activation and properties of indurated magnetite pellets, Int. J. Miner. Metall. Mater., 28(2021), No. 7, p. 1145. doi: 10.1007/s12613-020-2055-7
      [2]
      C.C. Yang, D.Q. Zhu, J. Pan, and Y. Shi, Some basic properties of granules from ore blends consisting of ultrafine magnetite and hematite ores, Int. J. Miner. Metall. Mater., 26(2019), No. 8, p. 953. doi: 10.1007/s12613-019-1824-7
      [3]
      D.Q. Zhu, B.J. Shi, J. Pan, and F. Zhang, Effect of pre-briquetting on the granulation of sinter mixture containing high proportion of specularite concentrate, Powder Technol., 331(2018), p. 250. doi: 10.1016/j.powtec.2018.03.015
      [4]
      M. Gan, X.H. Fan, Z.Y. Ji, et al., Optimising method for improving granulation effectiveness of iron ore sintering mixture, Ironmaking Steelmaking, 42(2015), No. 5, p. 351. doi: 10.1179/1743281214Y.0000000237
      [5]
      D.H. Liu, H. Liu, J.L. Zhang, et al., Basic characteristics of Australian iron ore concentrate and its effects on sinter properties during the high-limonite sintering process, Int. J. Miner. Metall. Mater., 24(2017), No. 9, p. 991. doi: 10.1007/s12613-017-1487-1
      [6]
      L.H. Hsieh, Effect of iron ore concentrate on sintering properties, ISIJ Int., 57(2017), No. 11, p. 1937. doi: 10.2355/isijinternational.ISIJINT-2017-276
      [7]
      J. Pan, B.J. Shi, D.Q. Zhu, and Y.P. Mo, Improving sintering performance of specularite concentrates by pre-briquetting process, ISIJ Int., 56(2016), No. 5, p. 777. doi: 10.2355/isijinternational.ISIJINT-2015-578
      [8]
      F.M. Mahdi, M. Mehrabi, A. Hassanpour, and F.L. Muller, On the formation of core-shell granules in batch high shear granulators at two scales, Powder Technol., 356(2019), p. 253. doi: 10.1016/j.powtec.2019.08.019
      [9]
      S.A.L. de Koster, L.X. Liu, J.D. Litster, and R.M. Smith, High-shear granulation: An investigation into granule breakage rates, Adv. Powder Technol., 32(2021), No. 5, p. 1390. doi: 10.1016/j.apt.2021.03.006
      [10]
      K.F. Lee, M. Dosta, A.D. McGuire, et al., Development of a multi-compartment population balance model for high-shear wet granulation with discrete element method, Comput. Chem. Eng., 99(2017), p. 171. doi: 10.1016/j.compchemeng.2017.01.022
      [11]
      A. Kumar, K.V. Gernaey, T.D. Beer, and I. Nopens, Model-based analysis of high shear wet granulation from batch to continuous processes in pharmaceutical production—A critical review, Eur. J. Pharm. Biopharm., 85(2013), No. 3, p. 814. doi: 10.1016/j.ejpb.2013.09.013
      [12]
      R. Maharjan and S.H. Jeong, High shear seeded granulation: Its preparation mechanism, formulation, process, evaluation, and mathematical simulation, Powder Technol., 366(2020), p. 667. doi: 10.1016/j.powtec.2020.03.020
      [13]
      E.L. Chan, K. Washino, H. Ahmadian, et al., Dem investigation of horizontal high shear mixer flow behaviour and implications for scale-up, Powder Technol., 270(2015), p. 561. doi: 10.1016/j.powtec.2014.09.017
      [14]
      O. Macho, J. Kabát, Ľ. Gabrišová, et al., Dimensionless criteria as a tool for creation of a model for predicting the size of granules in high-shear granulation, Part. Sci. Technol., 38(2020), No. 3, p. 381. doi: 10.1080/02726351.2018.1548531
      [15]
      Z.Y. Ji, Y.X. Zhang, M. Gan, X.H. Fan, X.L. Chen, and X.X. Huang, Importance of intensive mixing on sintering with fine-grained iron ore materials: Characterization and function mechanism, J. Mater. Res. Technol., 9(2020), No. 6, p. 14443. doi: 10.1016/j.jmrt.2020.10.044
      [16]
      S.G. Gong, Z.J. Zuo, G.L. Xie, H.S. Lu, and J.P. Zhang, Numerical simulation of wet particle flows in an intensive mixer, Powder Technol., 346(2019), p. 301. doi: 10.1016/j.powtec.2019.02.004
      [17]
      Z.G. Que, S.L. Wu, X.B. Zhai, and K.L. Li, Effect of characteristics of coarse iron ores on the granulation behaviour of concentrates in the sintering process, Ironmaking Steelmaking, 46(2019), No. 3, p. 246. doi: 10.1080/03019233.2017.1368954
      [18]
      A.M. Nyembwe, R.D. Cromarty, and A.M. Garbers-Craig, Prediction of the granule size distribution of iron ore sinter feeds that contain concentrate and micropellets, Powder Technol., 295(2016), p. 7. doi: 10.1016/j.powtec.2016.03.010
      [19]
      X.W. Lv, Q.G. Yuan, C.G. Bai, X.B. Huang, and L. Lei, A phenomenological description of moisture capacity of iron ores, Particuology, 10(2012), No. 6, p. 692. doi: 10.1016/j.partic.2011.08.008
      [20]
      S.L. Wu and G.L. Zhang, Liquid absorbability of iron ores and large limonite particle divided adding technology in the sintering process, Steel Res. Int., 86(2015), No. 9, p. 1014. doi: 10.1002/srin.201400300
      [21]
      C.C. Yang, D.Q. Zhu, J. Pan, and L.M. Lu, Granulation effectiveness of iron ore sinter feeds: Effect of ore properties, ISIJ Int., 58(2018), No. 8, p. 1427. doi: 10.2355/isijinternational.ISIJINT-2018-141
      [22]
      X.W. Lv, C.G. Bai, C.Q. Zhou, H. Xie, and R.M. Shi, New method to determine optimum water content for iron ore granulation, Ironmaking Steelmaking, 37(2010), No. 6, p. 407. doi: 10.1179/030192310X12690127076271
      [23]
      X.W. Lv, C.G. Bai, G.B. Qiu, S.F. Zhang, and M.L. Hu, Moisture capacity: Definition, measurement, and application in determining the optimal water content in granulating, ISIJ Int., 50(2010), No. 5, p. 695. doi: 10.2355/isijinternational.50.695
      [24]
      C.Y. Lin, H.C. Wang, W.Y. Hsu, A.N. Huang, and H.P. Kuo, Stage-wise characterization of the high shear granulation process by impeller torque changing rate, Adv. Powder Technol., 30(2019), No. 8, p. 1513. doi: 10.1016/j.apt.2019.04.029
      [25]
      Y. You, J.B. Guo, X.W. Lv, et al., Numerical simulation of particle mixing behavior in high speed shear mixer and cylinder mixer, ISIJ Int., 61(2021), No. 7, p. 2059. doi: 10.2355/isijinternational.ISIJINT-2020-768
      [26]
      Y. You, J.B. Guo, G. Li, et al., Investigation the iron ore fine granulation effects and particle adhesion behavior in a horizontal high-shear granulator, Powder Technol., 394(2021), p. 162. doi: 10.1016/j.powtec.2021.08.047
      [27]
      Z.P. Lv, W.S. Ma, M. Wang, et al., Co-constructing interfaces of multiheterostructure on MXene (Ti3C2Tx)-modified 3D self-supporting electrode for ultraefficient electrocatalytic HER in alkaline media, Adv. Funct. Mater., 31(2021), No. 29, art. No. 2102576. doi: 10.1002/adfm.202102576
      [28]
      S.L. Wu, Z.G. Que, and K.L. Li, Strengthening granulation behavior of specularite concentrates based on matching of characteristics of iron ores in sintering process, J. Iron Steel Res. Int., 25(2018), No. 10, p. 1017. doi: 10.1007/s42243-018-0153-9
      [29]
      E.W. Voice, S.H. Brooks, and P.K. Gledhill, The permeability of sinter beds, J. Iron Steel Inst., 174(1953), No. 2, p. 136.
      [30]
      S.M. Iveson, P.A.L. Wauters, S. Forrest, J.D. Litster, G.M.H. Meesters, and B. Scarlett, Growth regime map for liquid-bound granules: Further development and experimental validation, Powder Technol., 117(2001), No. 1-2, p. 83. doi: 10.1016/S0032-5910(01)00317-5
      [31]
      Y.C. Chen, Y.Z. Zhao, H.L. Gao, and J.Y. Zheng, Liquid bridge force between two unequal-sized spheres or a sphere and a plane, Particuology, 9(2011), No. 4, p. 374. doi: 10.1016/j.partic.2010.11.006
      [32]
      S.A.L. de Koster, K. Pitt, J.D. Litster, and R.M. Smith, High-shear granulation: An investigation into the granule consolidation and layering mechanism, Powder Technol., 355(2019), p. 514. doi: 10.1016/j.powtec.2019.07.076

    Catalog

      通讯作者: 陈斌, bchen63@163.com
      • 1. 

        沈阳化工大学材料科学与工程学院 沈阳 110142

      1. 本站搜索
      2. 百度学术搜索
      3. 万方数据库搜索
      4. CNKI搜索

    • /

      返回文章
      返回