Cite this article as:

Qiang Zhang, Yongsheng Sun, Yuexin Han, Yanjun Li, and Peng Gao, Review on coal-based reduction and magnetic separation for refractory iron-bearing resources, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp.2087-2105. https://dx.doi.org/10.1007/s12613-021-2408-x
Qiang Zhang, Yongsheng Sun, Yuexin Han, Yanjun Li, and Peng Gao, Review on coal-based reduction and magnetic separation for refractory iron-bearing resources, Int. J. Miner. Metall. Mater., 29(2022), No. 12, pp.2087-2105. https://dx.doi.org/10.1007/s12613-021-2408-x
引用本文 PDF XML SpringerLink

难选含铁资源深度还原-磁选研究进展

摘要: 难选含铁资源的高效开发利用日益受到重视。部分难选含铁资源可通过磁化焙烧技术进行开发利用,然而,仍有部分难选含铁资源选别难度极高,接近或超出选矿工艺的处理极限。针对常规选矿方法和磁化焙烧技术无法利用的难选含铁资源,东北大学基于选冶联合理念提出了深度还原技术,即在低于矿石熔化温度下将矿石中的铁矿物还原为金属铁,并通过调控促使金属铁聚集生长成一定粒度的铁颗粒,还原物料经磁选获得炼钢用优质金属铁。本文从热力学基础、还原动力学、金属铁颗粒的生长调控、添加剂作用机理和实际应用等角度对深度还原技术进行了详细综述,并对深度还原设备转底炉和回转窑进行了简要介绍。目前深度还原技术主要使用煤粉作为能源和还原剂,容易导致较高的二氧化碳排放和环境污染。因此,以氢气或生物质等清洁能源代替煤粉进行深度还原将具有良好的应用前景。

 

Review on coal-based reduction and magnetic separation for refractory iron-bearing resources

Abstract: The application of coal-based reduction in the efficient recovery of iron from refractory iron-bearing resources is comprehensively reviewed. Currently, the development and beneficiation of refractory iron-bearing resources have attracted increasing attention. However, the effect of iron recovery by traditional beneficiation methods is unacceptable. Coal-based reduction followed by magnetic separation is proposed, which adopts coal as the reductant to reduce iron oxides to metallic iron below the melting temperature. The metallic iron particles aggregate and grow, and the particle size continuously increases to be suitable for magnetic separation. The optimization and application of coal-based reduction have been abundantly researched. A detailed literature study on coal-based reduction is performed from the perspectives of thermodynamics, reduction kinetics, growth of metallic iron particles, additives, and application. The coal-based reduction industrial equipment can be developed based on the existing pyrometallurgical equipments, rotary hearth furnace and rotary kiln, which are introduced briefly. However, coal-based reduction currently mainly adopts coal as a reductant and fuel, which may result in high levels of carbon dioxide emissions, energy consumption, and pollution. Technological innovation aiming at decreasing carbon dioxide emissions is a new trend of green and sustainable development of the steel industry. Therefore, the substitution of coal with clean energy (hydrogen, biomass, etc.) for iron oxide reduction shows promise in the future.

 

/

返回文章
返回