Cite this article as:

Zicheng Xin, Jiangshan Zhang, Yu Jin, Jin Zheng, and Qing Liu, Predicting the alloying element yield in a ladle furnace using principal component analysis and deep neural network, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp.335-344. https://dx.doi.org/10.1007/s12613-021-2409-9
Zicheng Xin, Jiangshan Zhang, Yu Jin, Jin Zheng, and Qing Liu, Predicting the alloying element yield in a ladle furnace using principal component analysis and deep neural network, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp.335-344. https://dx.doi.org/10.1007/s12613-021-2409-9
引用本文 PDF XML SpringerLink

运用主成分分析和深度神经网络预测钢包炉合金元素收得率的研究

摘要: 钢包炉(ladle furnace,LF)精炼的核心任务之一是进行钢水合金化过程,以保证钢包到达连铸平台后满足钢水成分要求。钢水合金化也是较为复杂的物理化学反应过程,其不仅对钢水温度有影响,而且对钢水质量、合金料消耗量均有影响。因此,实现LF精炼过程中合金元素收得率的精准预测具有重要意义。本研究首先采用主成分分析法(principal component analysis,PCA)对模型输入变量进行处理,用于简化实际生产数据结构;然后,融合SGDM算法和L2正则化方法,构建了深度神经网络(deep neural network,DNN);最后,采用主成分分析和深度神经网络相结合的方法,建立了合金元素收得率预测模型。结果表明,Si元素收得率命中率在±1%, ±3%和 ±5%误差范围内分别为54.0%、93.8%和98.8%;Mn元素收得率命中率在±1%, ±2%和 ±3%误差范围内分别为77.0%、96.3%和99.5%。此外,PCA–DNN模型的预测精度优于参考炉次法、多元线性回归模型、改进BP神经网络模型和DNN模型,有助于实现钢水成分的“窄窗口”控制。本研究中合金元素收得率预测模型的建立,也可为LF智能精炼合金化控制模型的开发提供支撑。

 

Predicting the alloying element yield in a ladle furnace using principal component analysis and deep neural network

Abstract: The composition control of molten steel is one of the main functions in the ladle furnace (LF) refining process. In this study, a feasible model was established to predict the alloying element yield using principal component analysis (PCA) and deep neural network (DNN). The PCA was used to eliminate collinearity and reduce the dimension of the input variables, and then the data processed by PCA were used to establish the DNN model. The prediction hit ratios for the Si element yield in the error ranges of ±1%, ±3%, and ±5% are 54.0%, 93.8%, and 98.8%, respectively, whereas those of the Mn element yield in the error ranges of ±1%, ±2%, and ±3% are 77.0%, 96.3%, and 99.5%, respectively, in the PCA–DNN model. The results demonstrate that the PCA–DNN model performs better than the known models, such as the reference heat method, multiple linear regression, modified backpropagation, and DNN model. Meanwhile, the accurate prediction of the alloying element yield can greatly contribute to realizing a “narrow window” control of composition in molten steel. The construction of the prediction model for the element yield can also provide a reference for the development of an alloying control model in LF intelligent refining in the modern iron and steel industry.

 

/

返回文章
返回