留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 4
Apr.  2022

图(6)

数据统计

分享

计量
  • 文章访问数:  2289
  • HTML全文浏览量:  266
  • PDF下载量:  110
  • 被引次数: 0
Kuo-Chih Chou, General solution model and its new progress, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 577-585. https://doi.org/10.1007/s12613-022-2411-x
Cite this article as:
Kuo-Chih Chou, General solution model and its new progress, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 577-585. https://doi.org/10.1007/s12613-022-2411-x
引用本文 PDF XML SpringerLink
研究论文

GSM 模型和它的最新进展

  • 通讯作者:

    周国治    E-mail: kcc126@126.com

文章亮点

  • (1) 提出了一种新的计算方式来获得关于浓度三角形中间区域的物理化学性数据。
  • (2) 从理论和实际应用两方面讨论了该模型的可行性。
  • (3) 总结分析了关于物理化学数据计算各类模型的发展情况和局限性。
  • 多元体系的物理化学性质涉及到化学的各个领域,受到矿物、冶金、材料科学、环境、生物和农业等各个相关领域的关注。目前,相关数据主要可以通过两种计算方法获得,即第一原理法和经验法。虽然前者最近取得了很大的进展,但要提供实用数据还有很长的路要走;而后者在近半个世纪以来并没有取得任何进展。因此,需要一种理论上合理、实际应用中又准确的新方法来获得实际的、精确的三元和多元体系物理化学数据。本文在相应的二元模型基础上,提出了一种新的理论模型,即GSM模型。本文还从理论分析和实际应用两方面讨论了该理论模型的可行性。
  • Research Article

    General solution model and its new progress

    + Author Affiliations
    • The physicochemical properties of multicomponent systems are involved in all fields of chemistry and have received attention from various related areas such as minerals, metallurgy, material science, environment, biology, and agriculture. At present, the relevant data can be obtained by using two major calculation methods, namely, the first principle method and the empirical method. Though the former has achieved recent great progress, it is still a long way to offer practical data; while the latter has not received progress for almost half a century. Therefore, a new method that is theoretically reasonable and accurate in practical application is necessary to obtain practical and precise physicochemical data for ternary and multicomponent systems. In this paper, a new theoretical model is suggested based on its corresponding binary ones. The feasibility of this theoretical model is discussed in terms of both theoretical analysis and practical performance.
    • loading
    • Supplementary Informations12613-022-2411-x.doc
    • [1]
      J.H. Hildebrand, Solubility. XII. regular solutions, J. Am. Chem. Soc., 51(1929), No. 1, p. 66. doi: 10.1021/ja01376a009
      [2]
      J.H. Hildebrand, The term ‘regular solution’, Nature, 168(1951), No. 4281, art. No. 868.
      [3]
      G. Scatchard, S.E. Wood, and J.M. Mochel, Vapor−liquid equilibrium. V. Carbon tetrachloride–benzene mixtures, J. Am. Chem. Soc., 62(1940), No. 4, p. 712. doi: 10.1021/ja01861a006
      [4]
      G. Scatchard, S.E. Wood, and J.M. Mochel, Vapor−liquid equilibrium. VI. Benzene–methanol mixtures, J. Am. Chem. Soc., 68(1946), No. 10, p. 1957. doi: 10.1021/ja01214a024
      [5]
      G. Scatchard, S.E. Wood, and J.M. Mochel, Vapor−liquid equilibrium. VII. Carbon tetrachloride–methanol mixtures, J. Am. Chem. Soc., 68(1946), No. 10, p. 1960. doi: 10.1021/ja01214a025
      [6]
      G. Scatchard and L.B. Ticknor, Vapor−liquid equilibrium. IX. The methanol–carbon tetrachloride–benzene system, J. Am. Chem. Soc., 74(1952), No. 15, p. 3724. doi: 10.1021/ja01135a003
      [7]
      O. Redlich and A.T. Kister, Algebraic representation of thermodynamic properties and the classification of solutions, Ind. Eng. Chem., 40(1948), No. 2, p. 345. doi: 10.1021/ie50458a036
      [8]
      G. Scatchard, L.B. Ticknor, J.R. Goates, and E.R. McCartney, Heats of mixing in some non-electrolyte solutions, J. Am. Chem. Soc., 74(1952), No. 15, p. 3721. doi: 10.1021/ja01135a002
      [9]
      G. Scatchard, G.M. Kavanagh, and L.B. Ticknor, Vapor−liquid equilibrium. VIII. Hydrogen peroxide–water mixtures, J. Am. Chem. Soc., 74(1952), No. 15, p. 3715. doi: 10.1021/ja01135a001
      [10]
      G. Scatchard, Solutions of nonelectrolytes, Annu. Rev. Phys. Chem., 3(1952), p. 259. doi: 10.1146/annurev.pc.03.100152.001355
      [11]
      F. Kohler, Zur berechnung der thermodynamischen daten eines ternären systems aus den zugehörigen binären systemen, Monatshefte Für Chemie Und Verwandte Teile Anderer Wissenschaften, 91(1960), No. 4, p. 738.
      [12]
      G.W. Toop, Predicting ternary activities using binary data, Trans. Metall. Soc. AIME, 1965, 233, p. 850.
      [13]
      C. Colinet, Thesis University of Grenoble, France, 1967.
      [14]
      Y.M. Muggianu, M. Gambino, and J.P. Bros, Enthalpies de formation des alliages liquides bismuth-étain-gallium à 723 K. Choix d’une représentation analytique des grandeurs d’excès intégrales et partielles de mélange, J. Chim. Phys., 72(1975), p. 83. doi: 10.1051/jcp/1975720083
      [15]
      M. Hillert, Empirical methods of predicting and representing thermodynamic properties of ternary solution phases, Calphad, 4(1980), No. 1, p. 1. doi: 10.1016/0364-5916(80)90016-4
      [16]
      K.C. Chou, A new solution model for predicting ternary thermodynamic properties, Calphad, 11(1987), No. 3, p. 293. doi: 10.1016/0364-5916(87)90048-4
      [17]
      I. Ansara, Comparison of methods for thermodynamic calculation of phase diagrams, Int. Mater. Rev., 24(1979), No. 1, p. 20. doi: 10.1179/095066079790136417
      [18]
      K.C. Chou and Y. Austin Chang, A study of ternary geometrical models, Berichte Der Bunsengesellschaft Für Physikalische Chemie, 93(1989), No. 6, p. 735. doi: 10.1002/bbpc.19890930615
      [19]
      G. Kalies, C. Reichenbach, R. Rockmann, D. Enke, P. Bräuer, and M. Jaroniec, Further advancements in predicting adsorption equilibria using excess formalism: Calculation of adsorption excesses at the liquid/solid interface, J. Colloid Interface Sci., 352(2010), No. 2, p. 504. doi: 10.1016/j.jcis.2010.08.046
      [20]
      L.C. Prasad and A. Mikula, Surface segregation and surface tension in Al–Sn–Zn liquid alloys, Phys. B Condens. Matter, 373(2006), No. 1, p. 142. doi: 10.1016/j.physb.2005.11.113
      [21]
      H. Iloukhani and K. Khanlarzadeh, Physicochemical properties of quaternary systems and comparison of different geometrical models, J. Chem. Eng. Data, 56(2011), No. 11, p. 4244. doi: 10.1021/je200873y
      [22]
      V.F. Nikolaev, A.N. Satgaraev, and R.B. Sultanova, Predicting property isotherms of ternary mixtures on isotherms of the binary mixtures, presented by a non-stoichiometric model, J. Solut. Chem., 41(2012), No. 6, p. 953. doi: 10.1007/s10953-012-9849-9
      [23]
      L.C. Prasad and R.K. Jha, Correlation between bulk and surface properties of ternary Ag–Sn–Zn liquid alloys and concerned binaries, Phys. Chem. Liq., 45(2007), No. 2, p. 149. doi: 10.1080/00319100600928836
      [24]
      L.C. Prasad and A. Mikula, Thermodynamics of liquid Al–Sn–Zn alloys and concerned binaries in the light of soldering characteristics, Phys. B Condens. Matter, 373(2006), No. 1, p. 64. doi: 10.1016/j.physb.2005.11.073
      [25]
      E. Bonnier and R. Caboz, Sur l'estimation de l'entalpie libre de me'lange de certaines alliages metalliques liquides ternaires, Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences, 250(1960), p. 527.
      [26]
      C.C. Tsao and J.M. Smith, Applied thermodynamics, Chem. Eng. Prog. Symp.,Ser., 49(1953), p. 107.
      [27]
      K.C. Chou, A general solution model for predicting ternary thermodynamic properties, Calphad, 19(1995), No. 3, p. 315. doi: 10.1016/0364-5916(95)00029-E
      [28]
      K.C. Chou and S.K. Wei, A new generation solution model for predicting thermodynamic properties of a multicomponent system from binaries, Metall. Mater. Trans. B, 28(1997), No. 3, p. 439. doi: 10.1007/s11663-997-0110-7
      [29]
      K.C. Chou, W.C. Li, F.S. Li, and M.H. He, Formalism of new ternary model expressed in terms of binary regular-solution type parameters, Calphad, 20(1996), No. 4, p. 395. doi: 10.1016/S0364-5916(97)00002-3
      [30]
      P. Fan and K.C. Chou, A self-consistent model for predicting interaction parameters in multicomponent alloys, Metall. Mater. Trans. A, 30(1999), No. 12, p. 3099. doi: 10.1007/s11661-999-0220-8
      [31]
      L. Gomidželović, D. Živković, A. Kostov, A. Mitovski, and L. Balanović, Comparative thermodynamic study of Ga–In–Sb system, J. Therm. Anal. Calorim., 103(2011), No. 3, p. 1105. doi: 10.1007/s10973-010-1203-0
      [32]
      D. Živković, Ž. Živković, and B. Vučinic, Comparative thermodynamic analysis of the Bi–Ga0.1Sb0.9 section in the Bi–Ga–Sb system, J. Therm. Anal. Calorim., 61(2000), No. 1, p. 263. doi: 10.1023/A:1010105901326
      [33]
      D. Živković, Ž. Živković, L. Stuparević, and S. Rančić, Comparative thermodynamic investigation of the Bi–GaSb system, J. Therm. Anal. Calorim., 65(2001), No. 3, p. 805. doi: 10.1023/A:1011924132358
      [34]
      B. Trumic, D. Zivkovic, Z. Zivkovic, and D. Manasijevic, Comparative thermodynamic analysis of the Pb–Au0.7Sn0.3 section in the Pb–Au–Sn ternary system, Thermochim. Acta, 435(2005), No. 1, p. 113. doi: 10.1016/j.tca.2005.05.003
      [35]
      D. Manasijević, D. Živković, and Ž. Živković, Prediction of the thermodynamic properties for the Ga–Sb–Pb ternary system, Calphad, 27(2003), No. 4, p. 361. doi: 10.1016/j.calphad.2003.12.004
      [36]
      C.K. Behera and A. Sonaye, Measurement of zinc activity in the ternary In–Zn–Sn alloys by EMF method, Thermochim. Acta, 568(2013), p. 196. doi: 10.1016/j.tca.2013.06.039
      [37]
      L. Balanović, D. Živković, A. Mitovski, D. Manasijević, and Ž. Živković, Calorimetric investigations and thermodynamic calculation of Zn–Al–Ga system, J. Therm. Anal. Calorim., 103(2011), No. 3, p. 1055. doi: 10.1007/s10973-010-1070-8
      [38]
      L.J. Yan, S.B. Zheng, G.J. Ding, G.T. Xu, and Z.Y. Qiao, Surface tension calculation of the Sn–Ga–In ternary alloy, Calphad, 31(2007), No. 1, p. 112. doi: 10.1016/j.calphad.2006.09.005
      [39]
      M.M. Piñeiro, E. Mascato, L. Mosteiro, and J.L. Legido, Mixing properties for the ternary mixture methyl tert-butyl ether + 1-butanol + decane at 298.15 K, J. Chem. Eng. Data, 48(2003), No. 4, p. 758. doi: 10.1021/je025579q
      [40]
      H. Casas, L. Segade, S. Garcı́a-Garabal, M.M. Piñeiro, C. Franjo, E. Jiménez, and M.I. Paz Andrade, Excess molar enthalpies for propyl propanoate + cyclohexane + benzene at 298.15 and 308.15 K, Fluid Phase Equilib., 182(2001), No. 1-2, p. 279. doi: 10.1016/S0378-3812(01)00403-4
      [41]
      H. Arslan, Analytical determination of partial and integral properties of the six components systems Ni–Cr–Co–Al–Mo–Ti and their subsystems, Phys. B Condens. Matter, 438(2014), p. 48. doi: 10.1016/j.physb.2013.12.046
      [42]
      H. Arslan, A. Dogan, and T. Dogan, An analytical approach for thermodynamic properties of the six-component systems Ni–Cr–Co–Al–Mo–Ti and their subsystems, Phys. Met. Metallogr., 114(2013), No. 12, p. 1053. doi: 10.1134/S0031918X13220018
      [43]
      M. Hindler and A. Mikula, Calorimetric investigations of liquid gold–antimony–tin alloys, Int. J. Mater. Res., 103(2012), No. 7, p. 858. doi: 10.3139/146.110694
      [44]
      S. Knott, Z. Li, and A. Mikula, Integral enthalpy of mixing of the liquid ternary Au–Cu–Sn system, Thermochim. Acta, 470(2008), No. 1-2, p. 12. doi: 10.1016/j.tca.2008.01.014
      [45]
      A. Mikula and S. Knott, Thermodynamic investigations of ternary liquid alloys, J. Phys.: Condens. Matter, 20(2008), No. 11, art. No. 114109. doi: 10.1088/0953-8984/20/11/114109
      [46]
      V. Raghavan, Al–Pb–Zn (aluminum–lead–zinc), J. Phase Equilib. Diffus., 29(2008), No. 2, p. 188. doi: 10.1007/s11669-008-9261-8
      [47]
      L.P. Zhang, X.L. Song, Y.Y. Song, Z.B. Sun, Q. Li, X.P. Song, and L.Q. Wang, A method to estimate the Gibbs free energy of non-equilibrium alloys by thermal analysis, J. Therm. Anal. Calorim., 110(2012), No. 3, p. 1153. doi: 10.1007/s10973-011-2065-9
      [48]
      D. Živković, T.H. Grgurić, M. Gojić, D. Ćubela, Z.S. Šimišić, A. Kostov, and S. Kožuh, Calculation of thermodynamic properties of Cu–Al–(Ag, Au) shape memory alloy systems, Trans. Indian Inst. Met., 67(2014), No. 2, p. 285. doi: 10.1007/s12666-013-0328-9
      [49]
      Z.B. Sun, J. Guo, Y. Li, Y.M. Zhu, Q. Li, and X.P. Song, Effects of Ti addition on the liquid-phase separation of Cu71Cr29 alloy during rapid cooling, Metall. Mater. Trans. A, 39(2008), No. 5, p. 1054. doi: 10.1007/s11661-008-9466-9
      [50]
      J.F. Wan, S.P. Chen, and T.Y. Hsu (Xu Zuyao), The stability of transition phases in Fe–Mn–Si based alloys, Calphad, 25(2001), No. 3, p. 355. doi: 10.1016/S0364-5916(01)00055-4
      [51]
      X. Ma, Y.Y. Qian, and F. Yoshida, Effect of La on the Sn-rich halo formation in Sn60–Pb40 alloy, J. Alloys Compd., 327(2001), No. 1-2, p. 263. doi: 10.1016/S0925-8388(01)01554-7
      [52]
      X. Ma, Y.Y. Qian, and F. Yoshida, Effect of La on the Cu–Sn intermetallic compound (IMC) growth and solder joint reliability, J. Alloys Compd., 334(2002), No. 1-2, p. 224. doi: 10.1016/S0925-8388(01)01747-9
      [53]
      G.H. Zhang, L.J. Wang, and K.C. Chou, A comparison of different geometrical models in calculating physicochemical properties of quaternary systems, Calphad, 34(2010), No. 4, p. 504. doi: 10.1016/j.calphad.2010.10.004
      [54]
      K.C. Chou, X.M. Zhong, and K.D. Xu, Calculation of physicochemical properties in a ternary system with miscibility gap, Metall. Mater. Trans. B, 35(2004), No. 4, p. 715. doi: 10.1007/s11663-004-0011-y
      [55]
      D.M. Pérez, Universidade da Coruna [Dissertation], 2006, p. 347.
      [56]
      V. Kokotin, Technical University Dresden [Dissertation], 2010.
      [57]
      K.C. Chou and G.H. Zhang, Calculation of physicochemical properties with limited discrete data in multicomponent systems, Metall. Mater. Trans. B, 40(2009), No. 2, p. 223. doi: 10.1007/s11663-009-9229-z
      [58]
      U. Mehta, S.K. Yadav, I. Koirala, R.P. Koirala, and D. Adhikari, Thermodynamic and surface properties of liquid Ti–Al–Fe alloy at different temperatures, Phys. Chem. Liq., 59(2021), No. 4, p. 585. doi: 10.1080/00319104.2020.1793333
      [59]
      P. Sahu, S. Samal, and V. Kumar, Microstructural, magnetic, and geometrical thermodynamic investigation of FeCoNi(MnSi)x (0.0, 0.1, 0.25, 0.5, 0.75, 1.0) high entropy alloys, Materialia, 18(2021), art. No. 101133. doi: 10.1016/j.mtla.2021.101133
      [60]
      S.G. Sarwat and K.R. Ravi, Liquid phase as an indicator of glass-forming ability, Intermetallics, 133(2021), art. No. 107174. doi: 10.1016/j.intermet.2021.107174
      [61]
      Z. Śniadecki, The influence of 3d and 4d transition metals on the glass forming ability of ternary FeCo-based alloys, Metall. Mater. Trans. A, 52(2021), No. 5, p. 1861. doi: 10.1007/s11661-021-06196-7
      [62]
      S.K. Yadav, U. Mehta, and D. Adhikari, Optimization of thermodynamic and surface properties of ternary Ti–Al–Si alloy and its sub-binary alloys in molten state, Heliyon, 7(2021), No. 3, art. No. e06511. doi: 10.1016/j.heliyon.2021.e06511
      [63]
      A. Dogan and H. Arslan, Estimation of viscosity of alloys using Gibbs free energy of mixing and geometric model, Russ. J. Phys. Chem., 95(2021), No. 3, p. 586. doi: 10.1134/S003602442103002X
      [64]
      H. Arslan, Prediction of excess molar volumes for quaternary liquid mixtures at 298.15 K, Süleyman Demirel Üniversitesi Fen Edebiyat Fakültesi Fen Dergisi, (2021), p. 96.
      [65]
      V. Shrotri and L. Muhmood, Application of geometric models for calculation of viscosity and density of LiNO3 and CsNO3 based ternary nitrate salt systems, Calphad, 68(2020), art. No. 101749. doi: 10.1016/j.calphad.2020.101749
      [66]
      Z. Śniadecki, Glass-forming ability of Fe–Ni alloys substituted by group V and VI transition metals (V, Nb, Cr, Mo) studied by thermodynamic modeling, Metall. Mater. Trans. A, 51(2020), No. 9, p. 4777. doi: 10.1007/s11661-020-05897-9

    Catalog


    • /

      返回文章
      返回