留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 11
Nov.  2022

图(12)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  695
  • HTML全文浏览量:  225
  • PDF下载量:  49
  • 被引次数: 0
Xingqun He, Huadong Fu, and Jianxin Xie, Microstructure and properties evolution of in-situ fiber-reinforced Ag–Cu–Ni–Ce alloy during deformation and heat treatment, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp. 2000-2011. https://doi.org/10.1007/s12613-022-2412-9
Cite this article as:
Xingqun He, Huadong Fu, and Jianxin Xie, Microstructure and properties evolution of in-situ fiber-reinforced Ag–Cu–Ni–Ce alloy during deformation and heat treatment, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp. 2000-2011. https://doi.org/10.1007/s12613-022-2412-9
引用本文 PDF XML SpringerLink
研究论文

原位复合纤维强化AgCuNiCe合金制备过程的组织性能演变

  • 通讯作者:

    谢建新    E-mail: jxxie@mater.ustb.edu.cn

文章亮点

  • (1)采用大变形量轧制/拉拔和热处理实现了原位复合纤维强化银合金线材的制备。
  • (2)明确了原位复合纤维强化合金制备过程的组织性能演变规律。
  • (3)实现了Ag–11.40Cu–0.66Ni–0.05Ce合金强度和导电性能的同时提升。
  • 银合金是重要的低压和中压电接触材料,力学与导电性能的协同调控一直是银合金电接触材料领域的关键挑战和重点发展方向。本文提出了采用原位复合纤维强化方式调控Ag–11.40Cu–0.66Ni–0.05Ce (质量分数)合金力学与导电性能的思路,明确了原位复合纤维强化合金制备过程的组织性能演变规律。采用场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)和电子背散射衍射(EBSD)对不同变形阶段的微观组织进行了观察。研究结果表明,本文提出的方法可以实现原位复合纤维强化Ag–Cu–Ni–Ce合金的制备。大变形量拉拔后,纤维直径约为100–200 nm,合金室温硬度由铸态的HV 81.6提升到HV 169.3,导电率由铸态的74.3% IACS提升到78.6% IACS。随着变形量的增加,合金表现出两种不同的强化机制,电导率显示出三个阶段的变化速率。相关研究通过原位复合纤维强化机制的引入,实现了银合金电接触材料强度和导电性能的同时提升,为制备高性能银合金电接触材料提供了新的思路。
  • Research Article

    Microstructure and properties evolution of in-situ fiber-reinforced Ag–Cu–Ni–Ce alloy during deformation and heat treatment

    + Author Affiliations
    • Silver-based alloys are significant light-load electrical contact materials (ECMs). The trade-off between mechanical properties and electrical conductivity is always an important issue for the development of silver-based ECMs. In this paper, we proposed an idea for the regulation of the mechanical properties and the electrical conductivity of Ag–11.40Cu–0.66Ni–0.05Ce (wt%) alloy using in-situ composite fiber-reinforcement. The alloy was processed using rolling, heat treatment, and heavy drawing, the strength and electrical conductivity were tested at different deformation stages, and the microstructures during deformation were observed using field emission scanning electron microscope (FESEM), transmission electron microscope (TEM) and electron backscatter diffraction (EBSD). The results show that the method proposed in this paper can achieve the preparation of in-situ composite fiber-reinforced Ag–Cu–Ni–Ce alloys. After the heavy deformation drawing, the room temperature Vickers hardness of the as-cast alloy increased from HV 81.6 to HV 169.3, and the electrical conductivity improved from 74.3% IACS (IACS, i.e., international annealed copper standard) to 78.6% IACS. As the deformation increases, the alloy strength displays two different strengthening mechanisms, and the electrical conductivity has three stages of change. This research provides a new idea for the comprehensive performance control of high-performance silver-based ECMs.
    • loading
    • [1]
      M. Zhang, W.B. Tian, P.G. Zhang, J.X. Ding, Y.M. Zhang, and Z.M. Sun, Microstructure and properties of Ag–Ti3SiC2 contact materials prepared by pressureless sintering, Int. J. Miner. Metall. Mater., 25(2018), No. 7, p. 810. doi: 10.1007/s12613-018-1629-0
      [2]
      H.T. Wang, Z.X. Wang, L.Z. Wang, J.Q. Wang, and Y.C. Zhu, Effect of sintering temperature on the physical properties and electrical contact properties of doped AgSnO2 contact materials, Int. J. Miner. Metall. Mater., 25(2018), No. 11, p. 1275. doi: 10.1007/s12613-018-1680-x
      [3]
      H.Y. Li, X.H. Wang, X.H. Guo, X.H. Yang, and S.H. Liang, Material transfer behavior of AgTiB2 and AgSnO2 electrical contact materials under different currents, Mater. Des., 114(2017), p. 139. doi: 10.1016/j.matdes.2016.10.056
      [4]
      H. Zhang, X.H. Wang, Y.P. Li, C.S. Guo, and C.M. Zhang, Preparation and characterization of silver-doped graphene-reinforced silver matrix bulk composite as a novel electrical contact material, Appl. Phys. A, 125(2019), No. 2, art. No. 86. doi: 10.1007/s00339-019-2379-1
      [5]
      K.T. Kloch, P. Kozak, and A. Mlyniec, A review and perspectives on predicting the performance and durability of electrical contacts in automotive applications, Eng. Fail. Anal., 121(2021), art. No. 105143. doi: 10.1016/j.engfailanal.2020.105143
      [6]
      S. Biyik, F. Arslan, and M. Aydin, Arc-erosion behavior of boric oxide-reinforced silver-based electrical contact materials produced by mechanical alloying, J. Electron. Mater., 44(2015), No. 1, p. 457. doi: 10.1007/s11664-014-3399-4
      [7]
      T. Aida, K. Uchimura, T. Noguchi, and S. Ogata, Effect of alloying elements on the radio noise characteristics of silver based alloy contacts, [in] 1984 International Symposium on Electromagnetic Compatibility, Tokyo, 1984, p. 1.
      [8]
      Z. Castro-Dettmer and C. Persad, Performance of a copper-silver alloy as an electromagnetic launcher conductor material, IEEE Trans. Magn., 41(2005), No. 1, p. 176. doi: 10.1109/TMAG.2004.838926
      [9]
      S. Colombo, P. Battaini, and G. Airoldi, Precipitation kinetics in Ag–7.5 wt.% Cu alloy studied by isothermal DSC and electrical-resistance measurements, J. Alloys Compd., 437(2007), No. 1-2, p. 107. doi: 10.1016/j.jallcom.2006.07.076
      [10]
      H.K. Zhang, H.Z. Zhao, and Y.H. Zhou, A high-hardness compound in the Ag–Cu–Zr system, Sci. Bull., 31(1986), No. 9, p. 615.
      [11]
      Z.J. Li, J.J. Tian, S.W. Zhu, J.L. Chen, Q.L. Jin, and M. Xie, The study on microstructure and solidification path of AgCuZnNi brazing alloy, Precious Met., 37(2016), No. 3, p. 6.
      [12]
      R. Shirakawa, S. Suzuki, A. Matsuda, and N. Shibata, Cd-free silver alloy for sliding contact, [in] Electrical Contacts - 1992 Proceedings of the Thirty-Eighth IEEE Holm Conference on Electrical Contacts, Philadelphia, 1992, p. 119.
      [13]
      Y.T. Chen, M. Xie, Y.C. Yang, J.M. Zhang, M.M. Liu, S.B. Wang, and Y.F. Yang, Effects of Zn content on the grain growth law of Ag–Cu–Zn alloys, Rare Met. Mater. Eng., 43(2014), No. 1, p. 57. doi: 10.1016/S1875-5372(14)60052-7
      [14]
      R. Holm, Electric Contacts: Theory and Application, Springer, 1981, p. 109.
      [15]
      X. Qiao, J. Wang, S.P. Zhou, X.Y. He, J. Li, D.X. Zhuang, and C.G. Jiang, Effect of trace cerium on the electrical contact properties of AgCuNi alloy, Rare Met. Mater. Eng., 37(2008), No. 7, p. 1309.
      [16]
      M.X. Wei, Q. Liu, Q.Q. Gao, T.M. Zhao, X.Y. Zheng, X.Q. Long, M. Xie, and Y.T. Chen, Study the influence of rare earth elements on microstructure and property of AgCuNi alloy, Precious Met., 40(2019), No. S1, p. 31.
      [17]
      S.H. Wang, Q.L. Li, W. Liu, and Y.W. Yao, Effect of rare earth on the microstructure of AgCuNi alloys, J. Funct. Mater., V42(2011), p. 799.
      [18]
      F.X. Huang, M. Li, P. Ying, Y.H. Xu, and Y. Zhang, Effect of trace cerium on the as-cast microstructure of Ag–Cu–Ni alloy, Mater. Sci. Forum, 687(2011), p. 44. doi: 10.4028/www.scientific.net/MSF.687.44
      [19]
      H,T. Zhang, H.D. Fu, Y.H. Shen, and J.X. Xie, Rapid design of secondary deformation-aging parameters for ultralow Co content Cu–Ni–Co–Si–X alloy via Bayesian optimization machine learning, Int. J. Miner. Metall. Mater., 29(2022), No. 6, p. 1197. doi: 10.1007/s12613-022-2479-3
      [20]
      X.Q. He, H.D. Fu, H.T. Zhang, J.H. Fang, M. Xie, and J.X. Xie, Machine learning aided rapid discovery of high performance silver alloy electrical contact materials, Acta Metall. Sin., 58(2022), No. 6, p. 816.
      [21]
      R. Li, X.W. Zuo, and E.G. Wang, Influence of thermomechanical process and Fe addition on microstructural evolution and properties of Cu–26 wt%Ag composite, J. Alloys Compd., 773(2019), p. 121. doi: 10.1016/j.jallcom.2018.09.179
      [22]
      T. Gu, J.R. Medy, F. Volpi, O. Castelnau, S. Forest, E. Hervé-Luanco, F. Lecouturier, H. Proudhon, P.O. Renault, and L. Thilly, Multiscale modeling of the anisotropic electrical conductivity of architectured and nanostructured Cu–Nb composite wires and experimental comparison, Acta Mater., 141(2017), p. 131. doi: 10.1016/j.actamat.2017.08.066
      [23]
      C.C. Zhao, R.M. Niu, Y. Xin, D. Brown, D. McGuire, E.G. Wang, and K. Han, Improvement of properties in Cu–Ag composites by doping induced microstructural refinement, Mater. Sci. Eng. A, 799(2021), art. No. 140091. doi: 10.1016/j.msea.2020.140091
      [24]
      N.D. Stepanov, A.V. Kuznetsov, G.A. Salishchev, N.E. Khlebova, and V.I. Pantsyrny, Evolution of microstructure and mechanical properties in Cu–14%Fe alloy during severe cold rolling, Mater. Sci. Eng. A, 564(2013), p. 264. doi: 10.1016/j.msea.2012.11.121
      [25]
      L.P. Deng, Z.F. Liu, B.S. Wang, K. Han, and H.L. Xiang, Effects of interface area density and solid solution on the microhardness of Cu–Nb microcomposite wires, Mater. Charact., 150(2019), p. 62. doi: 10.1016/j.matchar.2019.02.002
      [26]
      L. Zhang and L. Meng, Evolution of microstructure and electrical resistivity of Cu–12wt.%Ag filamentary microcomposite with drawing deformation, Scripta Mater., 52(2005), No. 12, p. 1187. doi: 10.1016/j.scriptamat.2005.03.016
      [27]
      A. Benghalem and D.G. Morris, Microstructure and strength of wire-drawn Cu–Ag filamentary composites, Acta Mater., 45(1997), No. 1, p. 397. doi: 10.1016/S1359-6454(96)00152-8
      [28]
      Y. Sakai and H.J. Schneider-Muntau, Ultra-high strength, high conductivity Cu–Ag alloy wires, Acta Mater., 45(1997), No. 3, p. 1017. doi: 10.1016/S1359-6454(96)00248-0
      [29]
      J.T Hou, Q.L. Hao, L. Zhang, S.J. Zhong, K. Zhu, M. Xie, and W.Q. Qu, Study on the evolution of microstructure and properties during recrystallization of Ag–Cu alloy, Precious Met., 40(2019), Suppl. 1, p. 40.
      [30]
      S. Sahu, P.C. Yadav, and S. Shekhar, Use of hot rolling for generating low deviation twins and a disconnected random boundary network in inconel 600 alloy, Metall. Mater. Trans. A, 49(2018), No. 2, p. 628. doi: 10.1007/s11661-017-4431-0
      [31]
      H.F. Zhang, L. Zhou, W.L. Li, G.H. Li, Y.T. Tang, N. Guo, and J.C. Feng, Effect of tool plunge depth on the microstructure and fracture behavior of refill friction stir spot welded AZ91 magnesium alloy joints, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 699. doi: 10.1007/s12613-020-2044-x
      [32]
      G. Frommeyer and G. Wassermann, Microstructure and anomalous mechanical properties of in situ-produced silver-copper composite wires, Acta Metall., 23(1975), No. 11, p. 1353. doi: 10.1016/0001-6160(75)90144-3
      [33]
      J.D. Embury and R.M. Fisher, The structure and properties of drawn pearlite, Acta Metall., 14(1966), No. 2, p. 147. doi: 10.1016/0001-6160(66)90296-3
      [34]
      L. Zhang and L. Meng, Effects of drawing strain on formation of filamentary structure and conductivity for Cu–12%Ag alloy, Acta Metall. Sin., 41(2005), No. 3, p. 255.
      [35]
      V.A. Phillips, Electron microscope observations on moiré fringes and interfacial dislocations at cobalt precipitates in copper, Acta Metall., 14(1966), No. 3, p. 271. doi: 10.1016/0001-6160(66)90084-8
      [36]
      H. Kazempour-Liasi, M. Tajally, and H. Abdollah-Pour, Liquation cracking in the heat-affected zone of IN939 superalloy tungsten inert gas weldments, Int. J. Miner. Metall. Mater, 27(2020), No. 6, p. 764. doi: 10.1007/s12613-019-1954-y
      [37]
      S.I. Hong and M.A. Hill, Mechanical stability and electrical conductivity of Cu–Ag filamentary microcomposites, Mater. Sci. Eng. A, 264(1999), No. 1-2, p. 151. doi: 10.1016/S0921-5093(98)01097-1
      [38]
      S.I. Hong and M.A. Hill, Microstructural stability and mechanical response of Cu–Ag microcomposite wires, Acta Mater., 46(1998), No. 12, p. 4111. doi: 10.1016/S1359-6454(98)00106-2
      [39]
      K.S. Kumar, H.V. Swygenhoven, and S. Suresh, Mechanical behavior of nanocrystalline metals and alloys, Acta Mater., 51(2003), No. 19, p. 5743. doi: 10.1016/j.actamat.2003.08.032
      [40]
      A. Misra, J.P. Hirth, and R.G. Hoagland, Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites, Acta Mater., 53(2005), No. 18, p. 4817. doi: 10.1016/j.actamat.2005.06.025
      [41]
      J.B. Liu, L. Zhang, and L. Meng, Effects of rare-earth additions on the microstructure and strength of Cu–Ag composites, Mater. Sci. Eng. A, 498(2008), No. 1-2, p. 392. doi: 10.1016/j.msea.2008.08.014
      [42]
      D.W. Yao and L. Meng, Effects of solute, temperature and strain on the electrical resistivity of Cu–Ag filamentary composites, Phys. B: Condens. Matter, 403(2008), No. 19-20, p. 3384. doi: 10.1016/j.physb.2008.04.038
      [43]
      J.B. Liu, L. Zhang, A.P. Dong, L.T. Wang, Y.W. Zeng, and L. Meng, Effects of Cr and Zr additions on the microstructure and properties of Cu–6 wt.% Ag alloys, Mater. Sci. Eng. A, 532(2012), p. 331. doi: 10.1016/j.msea.2011.10.099
      [44]
      W.A. Spitzig, H.L. Downing, F.C. Laabs, E.D. Gibson, and J.D. Verhoeven, Strength and electrical conductivity of a deformation-processed Cu–5 pct Nb composite, Metall. Trans. A, 24(1993), No. 1, p. 7. doi: 10.1007/BF02669596

    Catalog


    • /

      返回文章
      返回