留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 11
Nov.  2022

图(9)  / 表(5)

数据统计

分享

计量
  • 文章访问数:  780
  • HTML全文浏览量:  295
  • PDF下载量:  61
  • 被引次数: 0
Dajun Zhai, Tao Qiu, Jun Shen, and Keqin Feng, Growth kinetics and mechanism of microarc oxidation coating on Ti–6Al–4V alloy in phosphate/silicate electrolyte, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp. 1991-1999. https://doi.org/10.1007/s12613-022-2413-8
Cite this article as:
Dajun Zhai, Tao Qiu, Jun Shen, and Keqin Feng, Growth kinetics and mechanism of microarc oxidation coating on Ti–6Al–4V alloy in phosphate/silicate electrolyte, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp. 1991-1999. https://doi.org/10.1007/s12613-022-2413-8
引用本文 PDF XML SpringerLink
研究论文

Ti–6Al–4V合金微弧氧化膜在磷酸盐/硅酸盐电解液中的生长动力学过程及其机理

  • 通讯作者:

    沈骏    E-mail: shenjun@cqu.edu.cn

文章亮点

  • (1) 设计了具有不同 PO43-和 SiO32-阴离子含量的二元电解液体系,深入研究了Ti–6Al–4V合金上微弧氧化涂层的生长动力学过程和机理。
  • (2) 发现PO43-离子促进孔隙的形成而有利于微弧放电,但SiO32-离子阻碍微弧放电。
  • (3) 分析并提出了微弧氧化涂层在微弧放电期间以分段线性函数的方式生长。
  • 微弧氧化(Microarc oxidation,MAO)是一种有效的钛合金表面处理方法,可使处理后的金属在极端环境中得到广泛应用。本文中,我们设计了Ti–6Al–4V合金在由不同占比的磷酸钠和硅酸钠组成的二元电解液中的MAO实验。采用扫描电子显微镜、透射电子显微镜、X射线衍射仪和动电位极化测试系统观察和测试了MAO涂层的表面形貌、成分和性能,以揭示${\rm PO}_4^{3-} $$ {\text{SiO}}_3^{2 - }$离子对MAO涂层生长动力学的影响。结果表明,${\rm PO}_4^{3-} $离子有利于在涂层内部产生微弧和孔隙,从而促进厚且多孔涂层的形成。$ {\text{SiO}}_3^{2 - }$离子有利于外部沉积层内孔隙的堵塞而阻碍微弧的产生,从而促进薄且致密涂层的形成。MAO涂层的厚度、密度、相含量和极化电阻主要受到放电微弧强度和数量的影响。在微弧放电过程中,在P/Si二元电解液中获得的MAO涂层的厚度随着处理时间的增加呈分段线性增长。另外,$ {\text{SiO}}_3^{2 - }$离子在MAO过程中的沉积增加了涂层致密度,从而导致下一阶段涂层的生长速率显著降低。
  • Research Article

    Growth kinetics and mechanism of microarc oxidation coating on Ti–6Al–4V alloy in phosphate/silicate electrolyte

    + Author Affiliations
    • Microarc oxidation (MAO) is an effective surface treatment method for Ti alloys to allow their application in extreme environments. Here, binary electrolytes consisting of different amounts of sodium phosphate and sodium silicate were designed for MAO. The surface morphology, composition, and properties of MAO coatings on Ti–6Al–4V alloy treated in 0.10 mol/L electrolyte were investigated to reveal the effect of ${\rm PO}_4^{3-} $ and ${\rm SiO}_3^{2-} $ on the growth kinetics of the MAO coatings, using scanning electron microscopy, transmission electron microscopy, X-ray diffraction, and potentiodynamic polarization. The results showed that ${\rm PO}_4^{3-} $ is beneficial for generating microarcs and forming pores within the coating, resulting in a thick but porous coating. ${\rm SiO}_3^{2-} $ facilitates the blocking of pores in the outer deposition layer and impedes the generation of microarcs, resulting in a thin dense coating. The thickness, density, phases content, and polarization resistance of the MAO coatings are primarily affected by the intensity of microarcs for low ${\rm SiO}_3^{2-} $ contents, and by the number of microarcs when the ${\rm SiO}_3^{2-} $ content is sufficiently high. The thickness of MAO coatings obtained in P/Si electrolytes shows a piecewise linear increase with increasing process time during the three stages of microarc discharge. ${\rm SiO}_3^{2-} $ is beneficial to the density increase of the coating formed in the previous stage of microarcs discharge, but slows down the growth of the coating formed in the next stage.
    • loading
    • [1]
      L. Zhou, S. Liu, J. Min, et al., Interface microstructure and formation mechanism of ultrasonic spot welding for Al–Ti dissimilar metals, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1506. doi: 10.1007/s12613-020-2043-y
      [2]
      S. Laketić, M. Rakin, M. Momčilović, J. Ciganović, Đ. Veljović, and I. Cvijović-Alagić, Surface modifications of biometallic commercially pure Ti and Ti–13Nb–13Zr alloy by picosecond Nd: YAG laser, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 285. doi: 10.1007/s12613-020-2061-9
      [3]
      D. Wang, S. Pang, C.Y. Zhou, Y. Peng, Z. Wang, and X.Z. Gong, Improve titanate reduction by electro-deoxidation of Ca3Ti2O7 precursor in molten CaCl2, Int. J. Miner. Metall. Mater., 27(2020), No. 12, p. 1618. doi: 10.1007/s12613-020-2165-2
      [4]
      C. Yang, S.H. Cui, Z.C. Wu, J.Y. Zhu, J. Huang, Z.Y. Ma, R.K.Y. Fu, X.B. Tian, P.K. Chu, and Z.Z. Wu, High efficient co-doping in plasma electrolytic oxidation to obtain long-term self-lubrication on Ti–6Al–4V, Tribol. Int., 160(2021), art. No. 107018. doi: 10.1016/j.triboint.2021.107018
      [5]
      K. Rokosz, T. Hryniewicz, and Ł. Dudek, Phosphate porous coatings enriched with selected elements via PEO treatment on titanium and its alloys: A review, Materials (Basel), 13(2020), No. 11, art. No. 2468.
      [6]
      B. Hamrahi, B. Yarmand, and A. Massoudi, Improved in-vitro corrosion performance of titanium using a duplex system of plasma electrolytic oxidation and graphene oxide incorporated silane coatings, Surf. Coat. Technol., 422(2021), art. No. 127558. doi: 10.1016/j.surfcoat.2021.127558
      [7]
      S.W. Guan, M. Qi, C. Wang, S.Y. Wang, and W.Q. Wang, Enhanced cytocompatibility of Ti–6Al–4V alloy through selective removal of Al and V from the hierarchical micro-arc oxidation coating, Appl. Surf. Sci., 541(2021), art. No. 148547. doi: 10.1016/j.apsusc.2020.148547
      [8]
      M. Shokouhfar, C. Dehghanian, M. Montazeri, and A. Baradaran, Preparation of ceramic coating on Ti substrate by plasma electrolytic oxidation in different electrolytes and evaluation of its corrosion resistance: Part II, Appl. Surf. Sci., 258(2012), No. 7, p. 2416. doi: 10.1016/j.apsusc.2011.10.064
      [9]
      M. Kaseem, S. Fatimah, N. Nashrah, and Y.G. Ko, Recent progress in surface modification of metals coated by plasma electrolytic oxidation: Principle, structure, and performance, Prog. Mater. Sci., 117(2021), art. No. 100735.
      [10]
      F. Mécuson, T. Czerwiec, T. Belmonte, L. Dujardin, A. Viola, and G. Henrion, Diagnostics of an electrolytic microarc process for aluminium alloy oxidation, Surf. Coat. Technol., 200(2005), No. 1-4, p. 804. doi: 10.1016/j.surfcoat.2005.01.076
      [11]
      M. Maryam, B. Kazem, and A. Fattah-alhosseini, Improving the wear resistance of plasma electrolytic oxidation (PEO) coatings applied on Mg and its alloys under the addition of nano- and micro-sized additives into the electrolytes: A review, J. Magnes. Alloys, 9(2021), No. 4, p. 1164. doi: 10.1016/j.jma.2020.11.016
      [12]
      S. Stojadinović, R. Vasilić, J. Radić-Perić, and M. Perić, Characterization of plasma electrolytic oxidation of magnesium alloy AZ31 in alkaline solution containing fluoride, Surf. Coat. Technol., 273(2015), p. 1. doi: 10.1016/j.surfcoat.2015.03.032
      [13]
      M. Laveissière, H. Cerda, J. Roche, L. Cassayre, and L. Arurault, In-depth study of the influence of electrolyte composition on coatings prepared by plasma electrolytic oxidation of TA6V alloy, Surf. Coat. Technol., 361(2019), p. 50. doi: 10.1016/j.surfcoat.2018.12.122
      [14]
      J.X. Han, Y.L. Cheng, W.B. Tu, T.Y. Zhan, and Y.L. Cheng, The black and white coatings on Ti–6Al–4V alloy or pure titanium by plasma electrolytic oxidation in concentrated silicate electrolyte, Appl. Surf. Sci., 428(2018), p. 684. doi: 10.1016/j.apsusc.2017.09.109
      [15]
      Q.B. Li, W.B. Yang, C.C. Liu, D.A. Wang, and J. Liang, Correlations between the growth mechanism and properties of micro-arc oxidation coatings on titanium alloy: Effects of electrolytes, Surf. Coat. Technol., 316(2017), p. 162. doi: 10.1016/j.surfcoat.2017.03.021
      [16]
      S. Aliasghari, P. Skeldon, and G.E. Thompson, Plasma electrolytic oxidation of titanium in a phosphate/silicate electrolyte and tribological performance of the coatings, Appl. Surf. Sci., 316(2014), p. 463. doi: 10.1016/j.apsusc.2014.08.037
      [17]
      Y.L. Cheng, X.Q. Wu, Z.G. Xue, E. Matykina, P. Skeldon, and G.E. Thompson, Microstructure, corrosion and wear performance of plasma electrolytic oxidation coatings formed on Ti–6Al–4V alloy in silicate-hexametaphosphate electrolyte, Surf. Coat. Technol., 217(2013), p. 129. doi: 10.1016/j.surfcoat.2012.12.003
      [18]
      N. Ao, D.X. Liu, X.H. Zhang, and G.Y. He, Microstructural characteristics of PEO coating: Effect of surface nanocrystallization, J. Alloys Compd., 823(2020), art. No. 153823. doi: 10.1016/j.jallcom.2020.153823
      [19]
      G. Mortazavi, J.C. Jiang, and E.I. Meletis, Investigation of the plasma electrolytic oxidation mechanism of titanium, Appl. Surf. Sci., 488(2019), p. 370. doi: 10.1016/j.apsusc.2019.05.250
      [20]
      S.W. Guan, M. Qi, Y.D. Li, and W.Q. Wang, Morphology evolution of the porous coatings on Ti–xAl alloys by Al adding into Ti during micro-arc oxidation in Na2B4O7 electrolyte, Surf. Coat. Technol., 395(2020), art. No. 125948. doi: 10.1016/j.surfcoat.2020.125948
      [21]
      X.X. Zhang, G. Cai, Y. Lv, Y.L. Wu, and Z.H. Dong, Growth mechanism of titania on titanium substrate during the early stage of plasma electrolytic oxidation, Surf. Coat. Technol., 400(2020), art. No. 126202. doi: 10.1016/j.surfcoat.2020.126202
      [22]
      N. Ao, D.X. Liu, S.X. Wang, Q. Zhao, X.H. Zhang, and M.M. Zhang, Microstructure and tribological behavior of a TiO2/hBN composite ceramic coating formed via micro-arc oxidation of Ti–6Al–4V alloy, J. Mater. Sci. Technol., 32(2016), No. 10, p. 1071. doi: 10.1016/j.jmst.2016.06.015
      [23]
      S.A. Salehizadeh, I. Carvalho, R. Serra, S. Calderon V, P.J. Ferreira, A. Cavaleiro, and S. Carvalho, Role of Au incorporation in the electrochemical behavior of Ag/a:C nanocomposite coatings, Surf. Coat. Technol., 401(2020), art. No. 126240. doi: 10.1016/j.surfcoat.2020.126240
      [24]
      A. Bordbar-Khiabani, S. Ebrahimi, and B. Yarmand, In-vitro corrosion and bioactivity behavior of tailored calcium phosphate-containing zinc oxide coating prepared by plasma electrolytic oxidation, Corros. Sci., 173(2020), art. No. 108781. doi: 10.1016/j.corsci.2020.108781
      [25]
      S. Lederer, S. Sankaran, T. Smith, and W. Fürbeth, Formation of bioactive hydroxyapatite-containing titania coatings on CP-Ti 4+ alloy generated by plasma electrolytic oxidation, Surf. Coat. Technol., 363(2019), p. 66. doi: 10.1016/j.surfcoat.2019.02.030
      [26]
      Y.M. Wang, B.L. Jiang, T.Q. Lei, and L.X. Guo, Microarc oxidation and spraying graphite duplex coating formed on titanium alloy for antifriction purpose, Appl. Surf. Sci., 246(2005), No. 1-3, p. 214. doi: 10.1016/j.apsusc.2004.11.010
      [27]
      A. Lugovskoy and S. Lugovskoy, Production of hydroxyapatite layers on the plasma electrolytically oxidized surface of titanium alloys, Mater. Sci. Eng. C, 43(2014), p. 527. doi: 10.1016/j.msec.2014.07.030
      [28]
      L.J. Chen and R.K.L. Su, Corrosion rate measurement by using polarization resistance method for microcell and macrocell corrosion: Theoretical analysis and experimental work with simulated concrete pore solution, Constr. Build. Mater., 267(2021), art. No. 121003. doi: 10.1016/j.conbuildmat.2020.121003
      [29]
      L.M. Chang, Growth regularity of ceramic coating on magnesium alloy by plasma electrolytic oxidation, J. Alloys Compd., 468(2009), No. 1-2, p. 462. doi: 10.1016/j.jallcom.2008.01.069
      [30]
      E. Matykina, R. Arrabal, F. Monfort, P. Skeldon, and G.E. Thompson, Incorporation of zirconia into coatings formed by DC plasma electrolytic oxidation of aluminium in nanoparticle suspensions, Appl. Surf. Sci., 255(2008), No. 5, p. 2830. doi: 10.1016/j.apsusc.2008.08.036
      [31]
      Y.G. Ko, S. Namgung, and D.H. Shin, Correlation between KOH concentration and surface properties of AZ91 magnesium alloy coated by plasma electrolytic oxidation, Surf. Coat. Technol., 205(2010), No. 7, p. 2525. doi: 10.1016/j.surfcoat.2010.09.055
      [32]
      D.D. Wang, X.T. Liu, Y.K. Wu, H.P. Han, Z. Yang, Y. Su, X.Z. Zhang, G.R. Wu, and D.J. Shen, Evolution process of the plasma electrolytic oxidation (PEO) coating formed on aluminum in an alkaline sodium hexametaphosphate ((NaPO3)6) electrolyte, J. Alloys Compd., 798(2019), p. 129. doi: 10.1016/j.jallcom.2019.05.253

    Catalog


    • /

      返回文章
      返回