留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 7
Jul.  2022

图(12)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  1167
  • HTML全文浏览量:  241
  • PDF下载量:  137
  • 被引次数: 0
Jianyue Zhang, Xuzhe Zhao, Deʼan Meng,  and Qingyou Han, Utilization of surface nanocrystalline to improve the bendability of AZ31 Mg alloy sheet, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1413-1424. https://doi.org/10.1007/s12613-022-2414-7
Cite this article as:
Jianyue Zhang, Xuzhe Zhao, Deʼan Meng,  and Qingyou Han, Utilization of surface nanocrystalline to improve the bendability of AZ31 Mg alloy sheet, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1413-1424. https://doi.org/10.1007/s12613-022-2414-7
引用本文 PDF XML SpringerLink
研究论文

利用表面纳米化技术改善AZ31镁合金的弯曲性能

  • 通讯作者:

    Jianyue Zhang    E-mail: zhang.12278@osu.edu

    Qingyou Han    E-mail: hanq@purdue.edu

文章亮点

  • (1) 研究了纳米层厚度,纳米层在弯曲过程中的位置(内层或者外层)对其弯曲性能的影响。
  • (2) 研究了纳米层厚度和位置对弯曲过程中应力应变分布的影响。
  • (3) 提出了通过控制纳米层厚度和位置来改善镁合金弯曲性能的新机制。
  • 镁合金因为其低密度和高比强度,成为新一代的结构材料。对比钢铁和铝合金,镁合金板材的弯曲成型性能相对较差。对于如何提高其成型性能成为了近年来的研究重点。表面纳米化是一种有效提高镁合金强度和表面硬度的手段,然后镁合金在表面纳米化之后,其塑性会明显降低,从而影响成型性能。 本文通过超声喷丸的方式,在镁合金的表面制备了不同厚度(51–145 µm)的纳米层,研究了表面纳米化之后的AZ31镁合金板材的V型弯曲性能。通过研究发现,双面纳米化处理的镁合金表现出和未处理相近的弯曲性能。同时,单面处理的板材表现出优于未处理板材的弯曲性能。当纳米层在弯曲过程中位于单侧处理的板材的内测,其改变了板材中性层在弯曲过程中的外移趋势,从而提高了弯曲性能,研究表明这种提高是非常有限的。在超声喷丸5 min处理的板材中,其中性层偏移最少,更厚的纳米层使得中性层偏至板材内测,从而降低弯曲性能。当纳米层在弯曲过程中位于板材的外层时,板材的弯曲性能也得以提高并且提高程度随着纳米层厚度的增加而增加。这是因为纳米材料在弯曲过程中导致了应力应变的再分布。在板材外层增加纳米层后,其弯曲顶端得到了应力更大应变更小的一种分布情况,而这种分布有利于纳米化后的板材的弯曲,从而阻止了裂纹的产生,提高了弯曲性能。

  • Research Article

    Utilization of surface nanocrystalline to improve the bendability of AZ31 Mg alloy sheet

    + Author Affiliations
    • A surface nanocrystalline was fabricated by ultrasonic shot peening (USSP) treatment at AZ31 Mg alloy. The effect of nanocrystalline thickness and its placed side (external or internal) on the bendability was studied by a V-bending test. Three durations, 5, 10, and 15 min, were applied to form the surface nanocrystalline with thicknesses of 51, 79, and 145 μm, respectively. Two-side treatment led to a similar bendability as that of as-received. One-side internal treatment for 5 min resulted in an improved bendability while the improvement was limited and degenerated for longer treatment. The improvement was related to the drawing back of the neutral axis. The one-side external treatment also improved the bendability, and the improvement was due to the redistribution of strain and stress during bending. With nanocrystalline at external side, it resulted in a larger stress but a smaller strain at the convex, which prevented the happening of crack during bending.

    • loading
    • [1]
      R.Z. Valiev, Paradoxes of severe plastic deformation, Adv. Eng. Mater., 5(2003), No. 5, p. 296. doi: 10.1002/adem.200310089
      [2]
      T.C. Lowe and R.Z. Valiev, The use of severe plastic deformation techniques in grain refinement, JOM, 56(2004), No. 10, p. 64. doi: 10.1007/s11837-004-0295-z
      [3]
      A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto, N. Tsuji, A. Rosochowski, and A. Yanagida, Severe plastic deformation (SPD) processes for metals, CIRP Ann., 57(2008), No. 2, p. 716. doi: 10.1016/j.cirp.2008.09.005
      [4]
      R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and Y.T. Zhu, Producing bulk ultrafine-grained materials by severe plastic deformation: Ten years later, JOM, 68(2016), No. 4, p. 1216. doi: 10.1007/s11837-016-1820-6
      [5]
      M. Rakita, M. Wang, Q.Y. Han, Y.X. Liu, and F. Yin, Ultrasonic shot peening, Int. J. Comput. Mater. Sci. Surf. Eng., 5(2013), No. 3, p. 189.
      [6]
      Q.Y. Han, Ultrasonic processing of materials, Metall. Mater. Trans. B, 46(2015), No. 4, p. 1603. doi: 10.1007/s11663-014-0266-x
      [7]
      G. Liu, J. Lu, and K. Lu, Surface nanocrystallization of 316L stainless steel induced by ultrasonic shot peening, Mater. Sci. Eng. A, 286(2000), No. 1, p. 91. doi: 10.1016/S0921-5093(00)00686-9
      [8]
      Q.Q. Sun, Q.Y. Han, X.T. Liu, W. Xu, and J. Li, The effect of surface contamination on corrosion performance of ultrasonic shot peened 7150 Al alloy, Surf. Coat. Technol., 328(2017), p. 469. doi: 10.1016/j.surfcoat.2017.08.028
      [9]
      Q.Q. Sun, Q.Y. Han, R. Xu, K.J. Zhao, and J. Li, Localized corrosion behaviour of AA7150 after ultrasonic shot peening: Corrosion depth vs. impact energy, Corros. Sci., 130(2018), p. 218. doi: 10.1016/j.corsci.2017.11.008
      [10]
      Q.Q. Sun and Q.Y. Han, Surface segregation phenomenon of surface severe plastic deformed Al–Zn–Mg–Cu alloys, Materialia, 11(2020), art. No. 100741. doi: 10.1016/j.mtla.2020.100741
      [11]
      V. Pandey, K. Chattopadhyay, N.C.S. Srinivas, and V. Singh, Role of ultrasonic shot peening on low cycle fatigue behavior of 7075 aluminium alloy, Int. J. Fatigue, 103(2017), p. 426. doi: 10.1016/j.ijfatigue.2017.06.033
      [12]
      T. Persenot, A. Burr, E. Plancher, J.Y. Buffière, R. Dendievel, and G. Martin, Effect of ultrasonic shot peening on the surface defects of thin struts built by electron beam melting: Consequences on fatigue resistance, Addit. Manuf., 28(2019), p. 821.
      [13]
      V. Singh, V. Pandey, S. Kumar, N.C.S. Srinivas, and K. Chattopadhyay, Effect of ultrasonic shot peening on surface microstructure and fatigue behavior of structural alloys, Trans. Indian Inst. Met., 69(2016), No. 2, p. 295. doi: 10.1007/s12666-015-0771-x
      [14]
      Y. Liu, B. Jin, D.J. Li, X.Q. Zeng, and J. Lu, Wear behavior of nanocrystalline structured magnesium alloy induced by surface mechanical attrition treatment, Surf. Coat. Technol., 261(2015), p. 219. doi: 10.1016/j.surfcoat.2014.11.026
      [15]
      S.W. Xia, Y. Liu, D.M. Fu, B. Jin, and J. Lu, Effect of surface mechanical attrition treatment on tribological behavior of the AZ31 alloy, J. Mater. Sci. Technol., 32(2016), No. 12, p. 1245. doi: 10.1016/j.jmst.2016.05.018
      [16]
      X.Y. Wang and D.Y. Li, Mechanical, electrochemical and tribological properties of nano-crystalline surface of 304 stainless steel, Wear, 255(2003), No. 7-12, p. 836. doi: 10.1016/S0043-1648(03)00055-3
      [17]
      S. Kumar, K. Chattopadhyay, G.S. Mahobia, and V. Singh, Hot corrosion behaviour of Ti–6Al–4V modified by ultrasonic shot peening, Mater. Des., 110(2016), p. 196. doi: 10.1016/j.matdes.2016.07.133
      [18]
      X.P. Jiang, X.Y. Wang, J.X. Li, D.Y. Li, C.S. Man, M.J. Shepard, and T. Zhai, Enhancement of fatigue and corrosion properties of pure Ti by sandblasting, Mater. Sci. Eng. A, 429(2006), No. 1-2, p. 30. doi: 10.1016/j.msea.2006.04.024
      [19]
      Y. Liu, B. Jin, and J. Lu, Mechanical properties and thermal stability of nanocrystallized pure aluminum produced by surface mechanical attrition treatment, Mater. Sci. Eng. A, 636(2015), p. 446. doi: 10.1016/j.msea.2015.03.068
      [20]
      Z. Yin, X.C. Yang, X.L. Ma, J. Moering, J. Yang, Y.L. Gong, Y.T. Zhu, and X.K. Zhu, Strength and ductility of gradient structured copper obtained by surface mechanical attrition treatment, Mater. Des., 105(2016), p. 89. doi: 10.1016/j.matdes.2016.05.015
      [21]
      P.K. Rai, V. Pandey, K. Chattopadhyay, L.K. Singhal, and V. Singh, Effect of ultrasonic shot peening on microstructure and mechanical properties of high-nitrogen austenitic stainless steel, J. Mater. Eng. Perform., 23(2014), No. 11, p. 4055. doi: 10.1007/s11665-014-1180-8
      [22]
      Q.S. Yang, B. Jiang, B. Song, Z.J. Yu, D.W. He, Y.F. Chai, J.Y. Zhang, and F.S. Pan, The effects of orientation control via tension–compression on microstructural evolution and mechanical behavior of AZ31 Mg alloy sheet, J. Magnes. Alloys, 10(2022), No. 2, p. 411. doi: 10.1016/j.jma.2020.08.005
      [23]
      Q.H. Wang, S.Y. Chen, B. Jiang, Z.Y. Jin, L.Y. Zhao, J.J. He, D.F. Zhang, G.S. Huang, and F.S. Pan, Grain size dependence of annealing strengthening of an extruded Mg–Gd–Zn alloy subjected to pre-compression deformation, J. Magnes. Alloys, (2021). https://doi.org/10.1016/j.jma.2021.03.015
      [24]
      Q.H. Wang, H.W. Zhai, L.T. Liu, H.B. Xia, B. Jiang, J. Zhao, D.L. Chen, and F.S. Pan, Novel Mg–Bi–Mn wrought alloys: The effects of extrusion temperature and Mn addition on their microstructures and mechanical properties, J. Magnes. Alloys, (2021). https://doi.org/10.1016/j.jma.2021.11.028
      [25]
      J.Y. Zhang, G.Y. Zhou, B. Jiang, A. Luo, X.Z. Zhao, A.T. Tang, and F.S. Pan, A novel Mg–CaMgSn master alloy for grain refinement in Mg–Al-based alloys, Metals, 11(2021), No. 11, art. No. 1722. doi: 10.3390/met11111722
      [26]
      H.B. Yang, L. Wu, B. Jiang, B. Lei, M. Yuan, H.M. Xie, A. Atrens, J.F. Song, G.S. Huang, and F.S. Pan, Discharge properties of Mg–Sn–Y alloys as anodes for Mg-air batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1705. doi: 10.1007/s12613-021-2258-6
      [27]
      Y.Z. Ma, C.L. Yang, Y.J. Liu, F.S. Yuan, S.S. Liang, H.X. Li, and J.S. Zhang, Microstructure, mechanical, and corrosion properties of extruded low-alloyed Mg–xZn–0.2Ca alloys, Int. J. Miner. Metall. Mater., 26(2019), No. 10, p. 1274. doi: 10.1007/s12613-019-1860-3
      [28]
      Q. Li, X. Lin, Q. Luo, Y.A. Chen, J.F. Wang, B. Jiang, and F.S. Pan, Kinetics of the hydrogen absorption and desorption processes of hydrogen storage alloys: A review, Int. J. Miner. Metall. Mater., 29(2022). No. 1, p. 32.
      [29]
      J.Y. Zhang, P. Peng, J. She, B. Jiang, A.T. Tang, F.S. Pan, and Q.Y. Han, A study of the corrosion behavior of AZ31 Mg alloy in depth direction after surface nanocrystallization, Surf. Coat. Technol., 396(2020), art. No. 125968. doi: 10.1016/j.surfcoat.2020.125968
      [30]
      J.Y. Zhang, Y.X. Jian, X.Z. Zhao, D.A. Meng, F.S. Pan, and Q.Y. Han, The tribological behavior of a surface-nanocrystallized magnesium alloy AZ31 sheet after ultrasonic shot peening treatment, J. Magnes. Alloys, 9(2021), No. 4, p. 1187. doi: 10.1016/j.jma.2020.11.012
      [31]
      B. Lin, J.Y. Zhang, Q.Q. Sun, J.H. Han, H.B. Li, and S. Wang, Microstructure, corrosion behavior and hydrogen evolution of USSP processed AZ31 magnesium alloy with a surface layer containing amorphous Fe-rich composite, Int. J. Hydrogen Energy, 46(2021), No. 17, p. 10172. doi: 10.1016/j.ijhydene.2020.12.132
      [32]
      H.Q. Sun, Y.N. Shi, and M.X. Zhang, Wear behaviour of AZ91D magnesium alloy with a nanocrystalline surface layer, Surf. Coat. Technol., 202(2008), No. 13, p. 2859. doi: 10.1016/j.surfcoat.2007.10.025
      [33]
      X.C. Meng, M. Duan, L. Luo, D.C. Zhan, B. Jin, Y.H. Jin, X.X. Rao, Y. Liu, and J. Lu, The deformation behavior of AZ31 Mg alloy with surface mechanical attrition treatment, Mater. Sci. Eng. A, 707(2017), p. 636. doi: 10.1016/j.msea.2017.09.094
      [34]
      M. Duan, L. Luo, and Y. Liu, Microstructural evolution of AZ31 Mg alloy with surface mechanical attrition treatment: Grain and texture gradient, J. Alloys Compd., 823(2020), art. No. 153691. doi: 10.1016/j.jallcom.2020.153691
      [35]
      H.L. Chen, J. Yang, H. Zhou, J. Moering, Z. Yin, Y.L. Gong, and K.Y. Zhao, Mechanical properties of gradient structure Mg alloy, Metall. Mater. Trans. A, 48(2017), No. 9, p. 3961. doi: 10.1007/s11661-017-4216-5
      [36]
      E. Ma, Instabilities and ductility of nanocrystalline and ultrafine-grained metals, Scripta Mater., 49(2003), No. 7, p. 663. doi: 10.1016/S1359-6462(03)00396-8
      [37]
      E. Ma, Four approaches to improve the tensile ductility of high-strength nanocrystalline metals, J. Mater. Eng. Perform., 14(2005), No. 4, p. 430. doi: 10.1361/105994905X56179
      [38]
      A. Taub, E. De Moor, A. Luo, D.K. Matlock, J.G. Speer, and U. Vaidya, Materials for automotive lightweighting, Annu. Rev. Mater. Res., 49(2019), p. 327. doi: 10.1146/annurev-matsci-070218-010134
      [39]
      A.A. Luo, Magnesium: Current and potential automotive applications, JOM, 54(2002), No. 2, p. 42. doi: 10.1007/BF02701073
      [40]
      J.Y. Zhang, Effect of Ultrasonic Shot Peening on Mechanical Properties and Corrosion Resistance of Mg Alloy Sheet [Dissertation], Purdue University, West Lafayette, 2019.
      [41]
      G.K. Williamson and W.H. Hall, X-ray line broadening from filed aluminium and wolfram, Acta Metall., 1(1953), No. 1, p. 22. doi: 10.1016/0001-6160(53)90006-6
      [42]
      B. Jiang, W.J. Liu, D. Qiu, M.X. Zhang, and F.S. Pan, Grain refinement of Ca addition in a twin-roll-cast Mg–3Al–1Zn alloy, Mater. Chem. Phys., 133(2012), No. 2-3, p. 611. doi: 10.1016/j.matchemphys.2011.12.087
      [43]
      L. Mattei, D. Daniel, G. Guiglionda, H. Klöcker, and J. Driver, Strain localization and damage mechanisms during bending of AA6016 sheet, Mater. Sci. Eng. A, 559(2013), p. 812. doi: 10.1016/j.msea.2012.09.028
      [44]
      J. Lee, K. Lee, D. Kim, H. Choi, and B. Kim, Spring-back and spring-go behaviors in bending of thick plates of high-strength steel at elevated temperature, Comput. Mater. Sci., 100(2015), p. 76. doi: 10.1016/j.commatsci.2014.10.059
      [45]
      C.T. Wang, G. Kinzel, and T. Altan, Mathematical modeling of plane-strain bending of sheet and plate, J. Mater. Process. Technol., 39(1993), No. 3-4, p. 279. doi: 10.1016/0924-0136(93)90164-2
      [46]
      B. Engel and H. Hassan, Advanced model for calculation of the neutral axis shifting and the wall thickness distribution in rotary draw bending processes, Int. J. Mater. Metall. Eng., 9(2015), No. 2, p. 239.
      [47]
      B. Engel and H.R. Hassan, Investigation of neutral axis shifting in rotary draw bending processes for tubes, Steel Res. Int., 85(2014), No. 7, p. 1209. doi: 10.1002/srin.201300333
      [48]
      G.S. Huang, L.F. Wang, H. Zhang, Y.X. Wang, Z.Y. Shi, and F.S. Pan, Evolution of neutral layer and microstructure of AZ31B magnesium alloy sheet during bending, Mater. Lett., 98(2013), p. 47. doi: 10.1016/j.matlet.2013.02.055
      [49]
      L.F. Wang, G.S. Huang, F.S. Pan, and M. Vedani, Effect of strain rate on the shift of neutral layer in AZ31B alloys during V-bending at warm conditions, Mater. Lett., 143(2015), p. 44. doi: 10.1016/j.matlet.2014.12.060
      [50]
      L.F. Wang, G.S. Huang, T.Z. Han, E. Mostaed, F.S. Pan, and M. Vedani, Effect of twinning and detwinning on the spring-back and shift of neutral layer in AZ31 magnesium alloy sheets during V-bend, Mater. Des., 68(2015), p. 80. doi: 10.1016/j.matdes.2014.12.017
      [51]
      K. Yilamu, R. Hino, H. Hamasaki, and F. Yoshida, Air bending and springback of stainless steel clad aluminum sheet, J. Mater. Process. Technol., 210(2010), No. 2, p. 272. doi: 10.1016/j.jmatprotec.2009.09.010
      [52]
      S.A. Kagzi, A.H. Gandhi, H.K. Dave, and H.K. Raval, An analytical model for bending and springback of bimetallic sheets, Mech. Adv. Mater. Struct., 23(2016), No. 1, p. 80. doi: 10.1080/15376494.2014.933990
      [53]
      Y.F. Chai, Y. Song, B. Jiang, J. Fu, Z.T. Jiang, Q.S. Yang, H.R. Sheng, G.S. Huang, D.F. Zhang, and F.S. Pan, Comparison of microstructures and mechanical properties of composite extruded AZ31 sheets, J. Magnes. Alloys, 7(2019), No. 4, p. 545. doi: 10.1016/j.jma.2019.09.007
      [54]
      I.K. Kim and S.I. Hong, Effect of component layer thickness on the bending behaviors of roll-bonded tri-layered Mg/Al/STS clad composites, Mater. Des., 49(2013), p. 935. doi: 10.1016/j.matdes.2013.02.052
      [55]
      G.S. Huang, Y.X. Wang, L.F. Wang, T.Z. Han, and F.S. Pan, Effects of grain size on shift of neutral layer of AZ31 magnesium alloy under warm condition, Trans. Nonferrous Met. Soc. China, 25(2015), No. 3, p. 732. doi: 10.1016/S1003-6326(15)63658-5
      [56]
      Q.S. Yang, B. Jiang, L.F. Wang, J.H. Dai, J.Y. Zhang, and F.S. Pan, Enhanced formability of a magnesium alloy sheet via in-plane pre-strain paths, J. Alloys Compd., 814(2020), art. No. 152278. doi: 10.1016/j.jallcom.2019.152278
      [57]
      Q.S. Yang, Q.W. Dai, C. Lou, J.H. Dai, J.Y. Zhang, B. Jiang, and F.S. Pan, Twinning, grain orientation, and texture variations in Mg alloy processed by pre-rolling, Prog. Nat. Sci. Mater. Int., 29(2019), No. 2, p. 231. doi: 10.1016/j.pnsc.2019.03.008

    Catalog


    • /

      返回文章
      返回