留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 7
Jul.  2022

图(10)  / 表(6)

数据统计

分享

计量
  • 文章访问数:  6930
  • HTML全文浏览量:  2713
  • PDF下载量:  223
  • 被引次数: 0
Debasis Saran, Atul Kumar, Sivaiah Bathula, David Klaumünzer, and Kisor K Sahu, Review on the phosphate-based conversion coatings of magnesium and its alloys, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1435-1452. https://doi.org/10.1007/s12613-022-2419-2
Cite this article as:
Debasis Saran, Atul Kumar, Sivaiah Bathula, David Klaumünzer, and Kisor K Sahu, Review on the phosphate-based conversion coatings of magnesium and its alloys, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1435-1452. https://doi.org/10.1007/s12613-022-2419-2
引用本文 PDF XML SpringerLink
特约综述

镁及其合金中磷酸盐基转化膜的研究进展

  • 通讯作者:

    Kisor K Sahu    E-mail: kisorsahu@iitbbs.ac.in

  • 镁(Mg)及其合金具有轻量化、生物相容性和高强度重比等特点,适用于航空航天、汽车、医疗等行业,但是它们对腐蚀的高敏感性,限制了它们的可用性。 目前,主要采用涂层或保护膜等表面处理技术来提高镁及其合金的防腐蚀性是一种常见且有效的手段。其中,化学转化膜 (CCs) 是通过金属基体与腐蚀液发生化学反应而形成的一种保护膜,因此,它与其他类型的保护膜或涂层有着根本的区别,是一种特殊的类型。常见的化学转化膜中铬酸盐基CCs的性能优于磷酸盐基CCs,但它们会释放致癌的六价铬离子(Cr6+)。 故此,磷酸盐基CCs被认为是一种经济、环保的替代品之一。 本文主要关注不同类型的磷酸盐基CCs,如锌、钙、镁、钒和锰的磷酸盐,以及磷酸盐–高锰酸盐。 重点讨论了它们的作用机理、现状、预处理方法以及pH、温度、浸泡时间、镀液成分等参数对各类磷酸盐基转化膜性能的影响。 阐述了磷酸盐化学转化膜技术面临的一些挑战和未来的研究方向。
  • Invited Review

    Review on the phosphate-based conversion coatings of magnesium and its alloys

    + Author Affiliations
    • Magnesium (Mg) and its alloys are lightweight as well as biocompatible and possess a high strength-to-weight ratio, making them suitable for many industries, including aerospace, automobile, and medical. The major challenge is their high susceptibility to corrosion, thereby limiting their usability. The considerably lower reduction potential of Mg compared to other metals makes it vulnerable to galvanic coupling. The oxide layer on Mg offers little corrosion resistance because of its high porosity, inhomogeneity, and fragility. Chemical conversion coatings (CCs) belong to a distinct class because of underlying chemical reactions, which are fundamentally different from other types of coating. Typically, a CC acts as an intermediate sandwich layer between the base metal and an aesthetic paint. Although chromate CCs offer superior performance compared to phosphate CCs, yet still they release carcinogenic hexavalent chromium ions (Cr6+); therefore, their use is prohibited in most European nations under the Registration, Evaluation, Authorization and Restriction of Chemicals legislation framework. Phosphate-based CCs are a cost-effective and environment-friendly alternative. Accordingly, this review primarily focuses on different types of phosphate-based CCs, such as zinc, calcium, Mg, vanadium, manganese, and permanganate. It discusses their mechanisms, current status, pretreatment practices, and the influence of various parameters—such as pH, temperature, immersion time, and bath composition—on the coating performance. Some challenges associated with phosphate CCs and future research directions are also elaborated.
    • loading
    • [1]
      X.B. Chen, N. Birbilis, and T.B. Abbott, Review of corrosion-resistant conversion coatings for magnesium and its alloys, Corrosion, 67(2011), No. 3, art. No. 035005. doi: 10.5006/1.3563639
      [2]
      G. Song, Recent progress in corrosion and protection of magnesium alloys, Adv. Eng. Mater., 7(2005), No. 7, p. 563. doi: 10.1002/adem.200500013
      [3]
      J.E. Gray and B. Luan, Protective coatings on magnesium and its alloys—A critical review, J. Alloys Compd., 336(2002), No. 1-2, p. 88. doi: 10.1016/S0925-8388(01)01899-0
      [4]
      D.D. Zhang, F. Peng, and X.Y. Liu, Protection of magnesium alloys: From physical barrier coating to smart self-healing coating, J. Alloys Compd., 853(2021), art. No. 157010. doi: 10.1016/j.jallcom.2020.157010
      [5]
      O. Gharbi, S. Thomas, C. Smith, and N. Birbilis, Chromate replacement: What does the future hold? npj Mater. Degrad., 2(2018), art. No. 12. doi: 10.1038/s41529-018-0034-5
      [6]
      K.W. Cho, V.S. Rao, and H.S. Kwon, Microstructure and electrochemical characterization of trivalent chromium based conversion coating on zinc, Electrochim. Acta, 52(2007), No. 13, p. 4449. doi: 10.1016/j.electacta.2006.12.032
      [7]
      European Chemicals Agency (ECHA), Understanding REACH, 2007 [2021-12-31]. https://echa.europa.eu/regulations/reach/understanding-reach
      [8]
      W.K. Chen, C.Y. Bai, C.M. Liu, C.S. Lin, and M.D. Ger, The effect of chromic sulfate concentration and immersion time on the structures and anticorrosive performance of the Cr(III) conversion coatings on aluminum alloys, Appl. Surf. Sci., 256(2010), No. 16, p. 4924. doi: 10.1016/j.apsusc.2010.03.003
      [9]
      S. Jana, M. Olszta, D. Edwards, M. Engelhard, A. Samanta, H.T. Ding, P. Murkute, O.B. Isgor, and A. Rohatgi, Microstructural basis for improved corrosion resistance of laser surface processed AZ31 Mg alloy, Corros. Sci., 191(2021), art. No. 109707. doi: 10.1016/j.corsci.2021.109707
      [10]
      M. Doerre, L. Hibbitts, G. Patrick, and N.K. Akafuah, Advances in automotive conversion coatings during pretreatment of the body structure: A review, Coatings, 8(2018), No. 11, art. No. 405. doi: 10.3390/coatings8110405
      [11]
      S. Pommiers, J. Frayret, A. Castetbon, and M. Potin-Gautier, Alternative conversion coatings to chromate for the protection of magnesium alloys, Corros. Sci., 84(2014), p. 135. doi: 10.1016/j.corsci.2014.03.021
      [12]
      Z.Y. Yong, J. Zhu, C. Qiu, and Y.L. Liu, Molybdate/phosphate composite conversion coating on magnesium alloy surface for corrosion protection, Appl. Surf. Sci., 255(2008), No. 5, p. 1672. doi: 10.1016/j.apsusc.2008.04.095
      [13]
      V.S. Saji, Review of rare-earth-based conversion coatings for magnesium and its alloys, J. Mater. Res. Technol., 8(2019), No. 5, p. 5012. doi: 10.1016/j.jmrt.2019.08.013
      [14]
      S. Shadanbaz and G.J. Dias, Calcium phosphate coatings on magnesium alloys for biomedical applications: A review, Acta Biomater., 8(2012), No. 1, p. 20. doi: 10.1016/j.actbio.2011.10.016
      [15]
      ASTM International, ASTM Standard B94-18: Standard Specification for Magnesium-Alloy Die Castings, ASTM International, West Conshohocken, PA, 2018.
      [16]
      S.A. Salman, R. Ichino, and M. Okido, A comparative electrochemical study of AZ31 and AZ91 magnesium alloy, Int. J. Corros., 2010(2010), art. No. 412129. doi: 10.1155/2010/412129
      [17]
      H.Y. Yang, X.W. Guo, X.B. Chen, and N. Birbilis, A homogenisation pre-treatment for adherent and corrosion-resistant Ni electroplated coatings on Mg-alloy AZ91D, Corros. Sci., 79(2014), p. 41. doi: 10.1016/j.corsci.2013.10.024
      [18]
      X.B. Chen, H.Y. Yang, T.B. Abbott, M.A. Easton, and N. Birbilis, Corrosion protection of magnesium and its alloys by metal phosphate conversion coatings, Surf. Eng., 30(2014), No. 12, p. 871. doi: 10.1179/1743294413Y.0000000235
      [19]
      L. Pezzato, D. Vranescu, M. Sinico, C. Gennari, A.G. Settimi, P. Pranovi, K. Brunelli, and M. Dabalà, Tribocorrosion properties of PEO coatings produced on AZ91 magnesium alloy with silicate- or phosphate-based electrolytes, Coatings, 8(2018), No. 6, art. No. 202. doi: 10.3390/coatings8060202
      [20]
      Z.M. Liu and W. Gao, Electroless nickel plating on AZ91 Mg alloy substrate, Surf. Coat. Technol., 200(2006), No. 16-17, p. 5087. doi: 10.1016/j.surfcoat.2005.05.023
      [21]
      K. Brunelli, M. Dabalà, I. Calliari, and M. Magrini, Effect of HCl pre-treatment on corrosion resistance of cerium-based conversion coatings on magnesium and magnesium alloys, Corros. Sci., 47(2005), No. 4, p. 989. doi: 10.1016/j.corsci.2004.06.016
      [22]
      W.J. Tomlinson and J.P. Mayor, Formation, microstructure, surface roughness, and porosity of electroless nickel coatings, Surf. Eng., 4(1988), No. 3, p. 235. doi: 10.1179/sur.1988.4.3.235
      [23]
      C.Y. Zhang, B. Liu, B.X. Yu, X.P. Lu, Y. Wei, T. Zhang, J.M.C. Mol, and F.H. Wang, Influence of surface pretreatment on phosphate conversion coating on AZ91 Mg alloy, Surf. Coat. Technol., 359(2019), p. 414. doi: 10.1016/j.surfcoat.2018.12.091
      [24]
      T. Li, Z.J. Leng, S.F. Wang, X.T. Wang, R. Ghomashchi, Y.S. Yang, and J.X. Zhou, Comparison of the effects of pre-activators on morphology and corrosion resistance of phosphate conversion coating on magnesium alloy, J. Magnes. Alloys, (2021). DOI: 10.1016/j.jma.2021.03.012
      [25]
      H.Y. Yang, X.B. Chen, X.W. Guo, G.H. Wu, W.J. Ding, and N. Birbilis, Coating pretreatment for Mg alloy AZ91D, Appl. Surf. Sci., 258(2012), No. 14, p. 5472. doi: 10.1016/j.apsusc.2012.02.044
      [26]
      Y.K. Zhang, J. You, J.Z. Lu, C.Y. Cui, Y.F. Jiang, and X.D. Ren, Effects of laser shock processing on stress corrosion cracking susceptibility of AZ31B magnesium alloy, Surf. Coat. Technol., 204(2010), No. 24, p. 3947. doi: 10.1016/j.surfcoat.2010.03.015
      [27]
      J.Z. Lu, K.Y. Luo, Y.K. Zhang, C.Y. Cui, G.F. Sun, J.Z. Zhou, L. Zhang, J. You, K.M. Chen, and J.W. Zhong, Grain refinement of LY2 aluminum alloy induced by ultra-high plastic strain during multiple laser shock processing impacts, Acta Mater., 58(2010), No. 11, p. 3984. doi: 10.1016/j.actamat.2010.03.026
      [28]
      X.C. Zhang, F. Zhong, X.P. Li, B. Liu, C.Y. Zhang, B. Buhe, T. Zhang, G.Z. Meng, and F.H. Wang, The effect of hot extrusion on the microstructure and anti-corrosion performance of LDHs conversion coating on AZ91D magnesium alloy, J. Alloys Compd., 788(2019), p. 756. doi: 10.1016/j.jallcom.2019.02.200
      [29]
      G.Q. Hu, K. Guan, L.B. Lu, J.R. Zhang, N. Lu, and Y.C. Guan, Engineered functional surfaces by laser microprocessing for biomedical applications, Engineering, 4(2018), No. 6, p. 822. doi: 10.1016/j.eng.2018.09.009
      [30]
      H.L. Liu, Z.P. Tong, Y. Yang, W.F. Zhou, J.N. Chen, X.Y. Pan, and X.D. Ren, Preparation of phosphate conversion coating on laser surface textured surface to improve corrosion performance of magnesium alloy, J. Alloys Compd., 865(2021), art. No. 158701. doi: 10.1016/j.jallcom.2021.158701
      [31]
      H.L. Liu, Z.P. Tong, W.F. Zhou, Y. Yang, J.F. Jiao, and X.D. Ren, Improving electrochemical corrosion properties of AZ31 magnesium alloy via phosphate conversion with laser shock peening pretreatment, J. Alloys Compd., 846(2020), art. No. 155837. doi: 10.1016/j.jallcom.2020.155837
      [32]
      M.A. Hafeez, A. Farooq, A. Zang, A. Saleem, and K.M. Deen, Phosphate chemical conversion coatings for magnesium alloys: A review, J. Coat. Technol. Res., 17(2020), No. 4, p. 827. doi: 10.1007/s11998-020-00335-2
      [33]
      A. Pragatheeswaran, P.V. Ananthapadmanabhan, Y. Chakravarthy, S. Bhandari, V. Chaturvedi, A. Nagaraj, and K. Ramachandran, Plasma spray-deposited lanthanum phosphate coatings for protection against molten uranium corrosion, Surf. Coat. Technol., 265(2015), p. 166. doi: 10.1016/j.surfcoat.2015.01.040
      [34]
      Y.L. Cheng, H.L. Wu, Z.H. Chen, H.M. Wang, and L.L. Li, Phosphating process of AZ31 magnesium alloy and corrosion resistance of coatings, Trans. Nonferrous Met. Soc. China, 16(2006), No. 5, p. 1086. doi: 10.1016/S1003-6326(06)60382-8
      [35]
      R. Amini and A.A. Sarabi, The corrosion properties of phosphate coating on AZ31 magnesium alloy: The effect of sodium dodecyl sulfate (SDS) as an eco-friendly accelerating agent, Appl. Surf. Sci., 257(2011), No. 16, p. 7134. doi: 10.1016/j.apsusc.2011.03.072
      [36]
      L.Y. Niu, J.X. Lin, Y. Li, Z.M. Shi, and L.C. Xu, Improvement of anticorrosion and adhesion to magnesium alloy by phosphate coating formed at room temperature, Trans. Nonferrous Met. Soc. China, 20(2010), No. 7, p. 1356. doi: 10.1016/S1003-6326(09)60304-6
      [37]
      Q. Li, S.Q. Xu, J.Y. Hu, S.Y. Zhang, X.K. Zhong, and X.K. Yang, The effects to the structure and electrochemical behavior of zinc phosphate conversion coatings with ethanolamine on magnesium alloy AZ91D, Electrochim. Acta, 55(2010), No. 3, p. 887. doi: 10.1016/j.electacta.2009.06.048
      [38]
      N.V. Phuong, K.H. Lee, D. Chang, and S. Moon, Effects of Zn2+ concentration and pH on the zinc phosphate conversion coatings on AZ31 magnesium alloy, Corros. Sci., 74(2013), p. 314. doi: 10.1016/j.corsci.2013.05.005
      [39]
      W. Shang, C.B. He, Y.Q. Wen, Y.Y. Wang, and Z. Zhang, Performance evaluation of triethanolamine as corrosion inhibitor for magnesium alloy in 3.5 wt% NaCl solution, RSC Adv., 6(2016), No. 115, p. 113967. doi: 10.1039/C6RA23203E
      [40]
      S.C.G. Leeuwenburgh, M.C. Heine, J.G.C. Wolke, S.E. Pratsinis, J. Schoonman, and J.A. Jansen, Morphology of calcium phosphate coatings for biomedical applications deposited using Electrostatic Spray Deposition, Thin Solid Films, 503(2006), No. 1-2, p. 69. doi: 10.1016/j.tsf.2005.11.116
      [41]
      Y.C. Su, Y.T. Guo, Z.L. Huang, Z.H. Zhang, G.Y. Li, J.S. Lian, and L.Q. Ren, Preparation and corrosion behaviors of calcium phosphate conversion coating on magnesium alloy, Surf. Coat. Technol., 307(2016), p. 99. doi: 10.1016/j.surfcoat.2016.08.065
      [42]
      B. Liu, X. Zhang, G.Y. Xiao, and Y.P. Lu, Phosphate chemical conversion coatings on metallic substrates for biomedical application: A review, Mater. Sci. Eng. C, 47(2015), p. 97. doi: 10.1016/j.msec.2014.11.038
      [43]
      Y.C. Su, Y.C. Su, Y.B. Lu, J.S. Lian, and G.Y. Li, Composite microstructure and formation mechanism of calcium phosphate conversion coating on magnesium alloy, J. Electrochem. Soc., 163(2016), No. 9, p. G138. doi: 10.1149/2.0801609jes
      [44]
      P. Amaravathy and T.S. Sampath Kumar, Novel strontium doped zinc calcium phosphate conversion coating on AZ31 magnesium alloy for biomedical applications, J. Biomimetics Biomater. Biomed. Eng., 34(2017), p. 57. doi: 10.4028/www.scientific.net/JBBBE.34.57
      [45]
      W. Zai, X.R. Zhang, Y.C. Su, H.C. Man, G.Y. Li, and J.S. Lian, Comparison of corrosion resistance and biocompatibility of magnesium phosphate (MgP), zinc phosphate (ZnP) and calcium phosphate (CaP) conversion coatings on Mg alloy, Surf. Coat. Technol., 397(2020), art. No. 125919. doi: 10.1016/j.surfcoat.2020.125919
      [46]
      Y.T. Guo, Y.C. Su, R. Gu, Z.H. Zhang, G.Y. Li, J.S. Lian, and L.Q. Ren, Enhanced corrosion resistance and biocompatibility of biodegradable magnesium alloy modified by calcium phosphate/collagen coating, Surf. Coat. Technol., 401(2020), art. No. 126318. doi: 10.1016/j.surfcoat.2020.126318
      [47]
      D. Liu, Y.Y. Li, Y. Zhou, and Y.G. Ding, The preparation, characterization and formation mechanism of a calcium phosphate conversion coating on magnesium alloy AZ91D, Materials (Basel), 11(2018), No. 6, art. No. 908. doi: 10.3390/ma11060908
      [48]
      X.B. Chen, N. Birbilis, and T.B. Abbott, Effect of [Ca2+] and $ \left[{\mathrm{P}\mathrm{O}}_{4}^{3-}\right] $ levels on the formation of calcium phosphate conversion coatings on die-cast magnesium alloy AZ91D, Corros. Sci., 55(2012), p. 226. doi: 10.1016/j.corsci.2011.10.022
      [49]
      R.C. Zeng, Z.D. Lan, L.H. Kong, Y.D. Huang, and H.Z. Cui, Characterization of calcium-modified zinc phosphate conversion coatings and their influences on corrosion resistance of AZ31 alloy, Surf. Coat. Technol., 205(2011), No. 11, p. 3347. doi: 10.1016/j.surfcoat.2010.11.027
      [50]
      R.X. Sun, S.K. Yang, and T. Lv, Corrosion behavior of AZ91D magnesium alloy with a calcium–phosphate–vanadium composite conversion coating, Coatings, 9(2019), No. 6, art. No. 379. doi: 10.3390/coatings9060379
      [51]
      M.F. Morks, Magnesium phosphate treatment for steel, Mater. Lett., 58(2004), No. 26, p. 3316. doi: 10.1016/j.matlet.2004.06.027
      [52]
      N. van Phuong and S. Moon, Comparative corrosion study of zinc phosphate and magnesium phosphate conversion coatings on AZ31 Mg alloy, Mater. Lett., 122(2014), p. 341. doi: 10.1016/j.matlet.2014.02.065
      [53]
      M. Fouladi and A. Amadeh, Comparative study between novel magnesium phosphate and traditional zinc phosphate coatings, Mater. Lett., 98(2013), p. 1. doi: 10.1016/j.matlet.2013.01.061
      [54]
      W. Zai, Y.C. Su, H.C. Man, J.S. Lian, and G.Y. Li, Effect of pH value and preparation temperature on the formation of magnesium phosphate conversion coatings on AZ31 magnesium alloy, Appl. Surf. Sci., 492(2019), p. 314. doi: 10.1016/j.apsusc.2019.05.309
      [55]
      J. Jayaraj, S. Amruth Raj, A. Srinivasan, S. Ananthakumar, U.T.S. Pillai, N.G.K. Dhaipule, and U.K. Mudali, Composite magnesium phosphate coatings for improved corrosion resistance of magnesium AZ31 alloy, Corros. Sci., 113(2016), p. 104. doi: 10.1016/j.corsci.2016.10.010
      [56]
      N. van PHUONG, M. Gupta, and S. Moon, Enhanced corrosion performance of magnesium phosphate conversion coating on AZ31 magnesium alloy, Trans. Nonferrous Met. Soc. China, 27(2017), No. 5, p. 1087. doi: 10.1016/S1003-6326(17)60127-4
      [57]
      W.Q. Zhou, D.Y. Shan, E.H. Han, and W. Ke, Structure and formation mechanism of phosphate conversion coating on die-cast AZ91D magnesium alloy, Corros. Sci., 50(2008), No. 2, p. 329. doi: 10.1016/j.corsci.2007.08.007
      [58]
      W.Q. Zhou, W. Tang, Q. Zhao, S.W. Wu, and E.H. Han, Influence of additive on structure and corrosion resistance of manganese phosphate film on AZ91 magnesium alloy, Mater. Sci. Forum, 686(2011), p. 176. doi: 10.4028/www.scientific.net/MSF.686.176
      [59]
      X.J. Cui, C.H. Liu, R.S. Yang, Q.S. Fu, X.Z. Lin, and M. Gong, Duplex-layered manganese phosphate conversion coating on AZ31 Mg alloy and its initial formation mechanism, Corros. Sci., 76(2013), p. 474. doi: 10.1016/j.corsci.2013.07.024
      [60]
      X.J. Cui, C.H. Liu, R.S. Yang, X.Z. Lin, and M. Gong, Preparation and characterization of phosphate film for magnesium alloy AZ31, Phys. Procedia, 25(2012), p. 194. doi: 10.1016/j.phpro.2012.03.070
      [61]
      X.J. Cui, C.H. Liu, R.S. Yang, M.T. Li, X.Z. Lin, and M. Gong, Phosphate film free of chromate, fluoride and nitrite on AZ31 magnesium alloy and its corrosion resistance, Trans. Nonferrous Met. Soc. China, 22(2012), No. 11, p. 2713. doi: 10.1016/S1003-6326(11)61522-7
      [62]
      T. Li, S.F. Wang, H.T. Liu, J.H. Wu, S.Q. Tang, Y.S. Yang, X.T. Wang, and J.X. Zhou, Improved corrosion resistance of Mg alloy by a green phosphating: Insights into pre-activation, temperature, and growth mechanism, J. Mater. Sci., 56(2021), No. 1, p. 828. doi: 10.1007/s10853-020-05288-w
      [63]
      X.B. Chen, X. Zhou, T.B. Abbott, M.A. Easton, and N. Birbilis, Double-layered manganese phosphate conversion coating on magnesium alloy AZ91D: Insights into coating formation, growth and corrosion resistance, Surf. Coat. Technol., 217(2013), p. 147. doi: 10.1016/j.surfcoat.2012.12.005
      [64]
      A.S. Hamdy, I. Doench, and H. Möhwald, Assessment of a one-step intelligent self-healing vanadia protective coatings for magnesium alloys in corrosive media, Electrochim. Acta, 56(2011), No. 5, p. 2493. doi: 10.1016/j.electacta.2010.11.103
      [65]
      K.Z. Chong and T.S. Shih, Conversion-coating treatment for magnesium alloys by a permanganate–phosphate solution, Mater. Chem. Phys., 80(2003), No. 1, p. 191. doi: 10.1016/S0254-0584(02)00481-9
      [66]
      M. Zhao, S.S. Wu, J.R. Luo, Y. Fukuda, and H. Nakae, A chromium-free conversion coating of magnesium alloy by a phosphate-permanganate solution, Surf. Coat. Technol., 200(2006), No. 18-19, p. 5407. doi: 10.1016/j.surfcoat.2005.07.064
      [67]
      F. Zucchi, A. Frignani, V. Grassi, G. Trabanelli, and C. Monticelli, Stannate and permanganate conversion coatings on AZ31 magnesium alloy, Corros. Sci., 49(2007), No. 12, p. 4542. doi: 10.1016/j.corsci.2007.04.011
      [68]
      L.Y. Niu, S.H. Chang, X. Tong, G.Y. Li, and Z.M. Shi, Analysis of characteristics of vanadate conversion coating on the surface of magnesium alloy, J. Alloys Compd., 617(2014), p. 214. doi: 10.1016/j.jallcom.2014.08.044
      [69]
      P. Zhou, B.X. Yu, Y.J. Hou, G.Q. Duan, L.X. Yang, B. Zhang, T. Zhang, and F.H. Wang, Revisiting the cracking of chemical conversion coating on magnesium alloys, Corros. Sci., 178(2021), art. No. 109069. doi: 10.1016/j.corsci.2020.109069
      [70]
      S.Y. Jian, Y.C. Tzeng, M.D. Ger, K.L. Chang, G.N. Shi, W.H. Huang, C.Y. Chen, and C.C. Wu, The study of corrosion behavior of manganese-based conversion coating on LZ91 magnesium alloy: Effect of addition of pyrophosphate and cerium, Mater. Des., 192(2020), art. No. 108707. doi: 10.1016/j.matdes.2020.108707
      [71]
      J. Jayaraj, K.R. Rajesh, S. Amruth Raj, A. Srinivasan, S. Ananthakumar, N.G.K. Dhaipule, S.K. Kalpathy, U.T.S. Pillai, and U.K. Mudali, Investigation on the corrosion behavior of lanthanum phosphate coatings on AZ31 Mg alloy obtained through chemical conversion technique, J. Alloys Compd., 784(2019), p. 1162. doi: 10.1016/j.jallcom.2019.01.121
      [72]
      H.A. Salam, I. Doench, and H. Moehwald, The effect of vanadia surface treatment on the corrosion inhibition characteristics of an advanced magnesium elektron 21 alloy in chloride media, Int. J. Electrochem. Sci., 7(2012), No. 9, p. 7751.
      [73]
      R.C. Zeng, X.X. Sun, Y.W. Song, F. Zhang, S.Q. Li, H.Z. Cui, and E.H. Han, Influence of solution temperature on corrosion resistance of Zn–Ca phosphate conversion coating on biomedical Mg–Li–Ca alloys, Trans. Nonferrous Met. Soc. China, 23(2013), No. 11, p. 3293. doi: 10.1016/S1003-6326(13)62866-6
      [74]
      S.J. Liao, B.X. Yu, X.L. Zhang, X.P. Lu, P. Zhou, C.Y. Zhang, X.B. Chen, T. Zhang, and F.H. Wang, New design principles for the bath towards chromate- and crack-free conversion coatings on magnesium alloys, J. Magnes. Alloys, 9(2021), No. 2, p. 505. doi: 10.1016/j.jma.2019.12.013
      [75]
      M. Esmaily, J.E. Svensson, S. Fajardo, N. Birbilis, G.S. Frankel, S. Virtanen, R. Arrabal, S. Thomas, and L.G. Johansson, Fundamentals and advances in magnesium alloy corrosion, Prog. Mater. Sci., 89(2017), p. 92. doi: 10.1016/j.pmatsci.2017.04.011

    Catalog


    • /

      返回文章
      返回