留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 4
Apr.  2022

图(5)

数据统计

分享

计量
  • 文章访问数:  2440
  • HTML全文浏览量:  204
  • PDF下载量:  57
  • 被引次数: 0
Bao Zhang, Jiusan Xiao, Shuqiang Jiao,  and Hongmin Zhu, Thermodynamic and thermoelectric properties of titanium oxycarbide with metal vacancy, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 787-795. https://doi.org/10.1007/s12613-022-2421-8
Cite this article as:
Bao Zhang, Jiusan Xiao, Shuqiang Jiao,  and Hongmin Zhu, Thermodynamic and thermoelectric properties of titanium oxycarbide with metal vacancy, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 787-795. https://doi.org/10.1007/s12613-022-2421-8
引用本文 PDF XML SpringerLink
研究论文

具有钛空位的碳氧化钛的热力学及热电性能

  • 通讯作者:

    肖九三    E-mail: jsxiao@ustb.edu.cn

    朱鸿民    E-mail: hzhu@ustb.edu.cn

文章亮点

  • (1) 研究了钛空位对碳氧化钛电子结构的影响。
  • (2) 研究了含钛空位碳氧化钛合成过程的热力学。
  • (3) 研究了钛空位对碳氧化钛电和热输运性能的影响。
  • 常规的碳氧化钛具有良好的导电性,然而高载流子浓度导致塞贝克系数偏低,限制了其在热电领域的发展。本文旨在探究金属空位对碳氧化钛热电性能的影响。首先,基于密度泛函理论计算预测了钛空位对碳氧化钛电子结构的影响,结果表明钛空位的存在将削弱穿过费米能级电子的态密度,降低载流子浓度的同时提高载流子迁移率。利用碳化钛与二氧化钛在900℃下的反应合成了含钛空位的碳氧化钛,并采用差示扫描量热法研究了反应过程的热力学。通过放电等离子烧结分别制备了常规碳氧化钛(TiC0.5O0.5)和含钛空位的碳氧化钛(Ti0.86C0.63O0.37),通过电导率、塞贝克系数和热导率测试结合显微结构表征研究了钛空位对碳氧化钛热电性能的影响。结果表明,钛空位的引入使载流子浓度从TiC0.5O0.5的1.71×1021 cm−3降低到Ti0.86C0.63O0.37的4.5 × 1020 cm−3。此外,空位富集区和常规碳氧化钛晶体区域形成的半相干界面有效提高了内部电子散射几率,使电子迁移率从1.65 cm−2·V−1·s−1提高至4.22 cm−2·V−1·s−1,既维持了高导电性又改善了塞贝克系数,在1073 K达到−64 μV·K−1。最终,Ti0.86C0.63O0.37的热电优值ZT相较于TiC0.5O0.5在1073 K时增加了五个数量级,达到2.11 × 10−2。本文通过空位工程的方式实现类金属陶瓷材料中载流子浓度和迁移率的调节,在维持其高导电性优势的同时提升了塞贝克系数,为实现该类材料在热电领域的应用提供了策略和方向。
  • Research Article

    Thermodynamic and thermoelectric properties of titanium oxycarbide with metal vacancy

    + Author Affiliations
    • Normal titanium oxycarbide exhibits an excellent electrical conductivity and a high carrier concentration of approximately 1021 cm−3; however, the low Seebeck coefficient limits the thermoelectric application. In this study, first-principle calculations demonstrate that the metal vacancy of titanium oxycarbide weakens the density of state passing through the valence band at the Fermi level, impairing the carrier concentration and enhancing carrier mobility. Thermodynamic analysis justifies the formation of titanium oxycarbide with metal vacancy through solid-state reaction. Transmission electron microscopic images demonstrate the segregation of metal vacancy based on the observation of the defect-rich and single-crystal face-centered cubic regions. Metal vacancy triggers the formation of vacancy-rich and single-crystal face-centered cubic regions. The aggregation of metal vacancy leads to the formation of the vacancy-rich region and other regions with a semi-coherent interface, suppressing the carrier concentration from 1.71 × 1021 to 4.5 × 1020 cm−3 and resulting in the Seebeck coefficient from −11 μV/K of TiC0.5O0.5 to −64 μV/K at 1073 K. Meanwhile, vacancies accelerate electron migration from 1.65 to 4.22 cm−2·V−1·s−1, maintaining high conductivity. The figure of merit (ZT) increases more than five orders of magnitude via the introduction of metal vacancy, with the maximum figure of 2.11 × 10−2 at 1073 K. These results indicate the potential thermoelectric application of metal-oxycarbide materials through vacancy engineering.
    • loading
    • [1]
      X.L. Shi, J. Zou, and Z.G. Chen, Advanced thermoelectric design: From materials and structures to devices, Chem. Rev., 120(2020), No. 15, p. 7399. doi: 10.1021/acs.chemrev.0c00026
      [2]
      H.T. Su, F.B. Zhou, B.B. Shi, H.N. Qi, and J.C. Deng, Causes and detection of coalfield fires, control techniques, and heat energy recovery: A review, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 275. doi: 10.1007/s12613-019-1947-x
      [3]
      S. Roychowdhury, T. Ghosh, R. Arora, M. Samanta, L. Xie, N.K. Singh, A. Soni, J. He, U.V. Waghmare, and K. Biswas, Enhanced atomic ordering leads to high thermoelectric performance in AgSbTe2, Science, 371(2021), No. 6530, p. 722. doi: 10.1126/science.abb3517
      [4]
      Z. Ma, J.T. Wei, P.S. Song, M.L. Zhang, L.L. Yang, J. Ma, W. Liu, F.H. Yang, and X.D. Wang, Review of experimental approaches for improving ZT of thermoelectric materials, Mater. Sci. Semicond. Process., 121(2021), art. No. 105303. doi: 10.1016/j.mssp.2020.105303
      [5]
      X. Zhang and L.D. Zhao, Thermoelectric materials: Energy conversion between heat and electricity, J. Materiomics, 1(2015), No. 2, p. 92. doi: 10.1016/j.jmat.2015.01.001
      [6]
      G.J. Tan, L.D. Zhao, and M.G. Kanatzidis, Rationally designing high-performance bulk thermoelectric materials, Chem. Rev., 116(2016), No. 19, p. 12123. doi: 10.1021/acs.chemrev.6b00255
      [7]
      R. Prasad and S.D. Bhame, Review on texturization effects in thermoelectric oxides, Mater. Renewable Sustainable Energy, 9(2020), art. No. 3. doi: 10.1007/s40243-019-0163-y
      [8]
      A. Nag and V. Shubha, Oxide thermoelectric materials: A structure–property relationship, J. Electron. Mater., 43(2014), No. 4, p. 962. doi: 10.1007/s11664-014-3024-6
      [9]
      Y. Gu, X.L. Shi, L. Pan, W.D. Liu, Q. Sun, X. Tang, L.Z. Kou, Q.F. Liu, Y.F. Wang, and Z.G. Chen, Rational electronic and structural designs advance BiCuSeO thermoelectrics, Adv. Funct. Mater., 31(2021), No. 25, art. No. 2101289. doi: 10.1002/adfm.202101289
      [10]
      H.Q. Liu, H.A. Ma, T.C. Su, Y.W. Zhang, B. Sun, B.W. Liu, L.J. Kong, B.M. Liu, and X.P. Jia, High-thermoelectric performance of TiO2−x fabricated under high pressure at high temperatures, J. Materiomics, 3(2017), No. 4, p. 286. doi: 10.1016/j.jmat.2017.06.002
      [11]
      G.Y. Ji, L.J. Chang, H.A. Ma, B.M. Liu, Q. Chen, Y. Wang, X.J. Li, J.N. Wang, Y.W. Zhang, and X.P. Jia, Synthesis and characterization of Al doped non-stoichiometric ratio titanium oxide at high temperature and pressure, J. Alloys Compd., 850(2021), art. No. 156623. doi: 10.1016/j.jallcom.2020.156623
      [12]
      D.T. Morelli, Thermal conductivity and thermoelectric power of titanium carbide single crystals, Phys. Rev. B Condens. Matter, 44(1991), No. 11, p. 5453. doi: 10.1103/PhysRevB.44.5453
      [13]
      L.W. Zhao, W.B. Qiu, Y.X. Sun, L.Q. Chen, H. Deng, L. Yang, X.M. Shi, and J. Tang, Enhanced thermoelectric performance of Bi0.3Sb1.7Te3 based alloys by dispersing TiC ceramic nanoparticles, J. Alloys Compd., 863(2021), art. No. 158376. doi: 10.1016/j.jallcom.2020.158376
      [14]
      L.H. Huang, J.C. Wang, X.B. Mo, X.B. Lei, S.D. Ma, C. Wang, and Q.Y. Zhang, Improving the thermoelectric properties of the half-Heusler compound VCoSb by vanadium vacancy, Materials, 12(2019), No. 10, art. No. 1637. doi: 10.3390/ma12101637
      [15]
      G. Li, J.Y. Yang, Y. Xiao, L.W. Fu, Y.B. Luo, D. Zhang, M. Liu, W.X. Li, and M.Y. Zhang, Effect of TiC nanoinclusions on thermoelectric and mechanical performance of polycrystalline In4Se2.65, J. Am. Ceram. Soc., 98(2015), No. 12, p. 3813. doi: 10.1111/jace.13773
      [16]
      Y. Liu, C.L. Ou, J.G. Hou, and H.M. Zhu, Effect of coated TiO2 nano-particle on thermoelectric performance of TiC0.5O0.5 ceramics, J. Alloys Compd., 531(2012), p. 5. doi: 10.1016/j.jallcom.2012.02.176
      [17]
      C.L. Ou, J.G. Hou, T.R. Wei, B. Jiang, S.Q. Jiao, J.F. Li, and H.M. Zhu, High thermoelectric performance of all-oxide heterostructures with carrier double-barrier filtering effect, NPG Asia Mater., 7(2015), No. 5, art. No. e182. doi: 10.1038/am.2015.36
      [18]
      K.C. Chang and C.J. Liu, Disorder effect and thermoelectric properties of Bi1−xCaxCu1−ySeO with Cu vacancy, J. Alloys Compd., 896(2022), art. No. 163033. doi: 10.1016/j.jallcom.2021.163033
      [19]
      W. Saito, K. Hayashi, J.F. Dong, J.F. Li, and Y. Miyazaki, Control of the thermoelectric properties of Mg2Sn single crystals via point-defect engineering, Sci. Rep., 2020(2020), art. No. 10. doi: 10.1038/s41598-020-58998-1
      [20]
      Y.B. Zhu, Z.J. Han, F. Jiang, E.T. Dong, B.P. Zhang, W.Q. Zhang, and W.S. Liu, Thermodynamic criterions of the thermoelectric performance enhancement in Mg2Sn through the self-compensation vacancy, Mater. Today Phys., 16(2021), art. No. 100327. doi: 10.1016/j.mtphys.2020.100327
      [21]
      Y. Wang, W.D. Liu, X.L. Shi, M. Hong, L.J. Wang, M. Li, H. Wang, J. Zou, and Z.G. Chen, Enhanced thermoelectric properties of nanostructured n-type Bi2Te3 by suppressing Te vacancy through non-equilibrium fast reaction, Chem. Eng. J., 391(2020), art. No. 123513. doi: 10.1016/j.cej.2019.123513
      [22]
      B. Jiang, N. Hou, S.Y. Huang, G.G. Zhou, J.G. Hou, Z.M. Cao, and H.M. Zhu, Structural studies of TiC1−xOx solid solution by Rietveld refinement and first-principles calculations, J. Solid State Chem., 204(2013), p. 1. doi: 10.1016/j.jssc.2013.05.009
      [23]
      B. Zhang, J.S. Xiao, S.Q. Jiao, and H.M. Zhu, A novel titanium oxycarbide phase with metal-vacancy (Ti1−yCxO1−x): Structural and thermodynamic basis, Ceram. Int., 47(2021), No. 11, p. 16324. doi: 10.1016/j.ceramint.2021.02.212
      [24]
      H.J. Monkhorst and J.D. Pack, Special points for Brillouin-zone integrations, Phys. Rev. B, 13(1976), No. 12, p. 5188. doi: 10.1103/PhysRevB.13.5188
      [25]
      J.P. Perdew and W. Yue, Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation, Phys. Rev. B, 33(1986), No. 12, p. 8800. doi: 10.1103/PhysRevB.33.8800
      [26]
      J.P. Perdew, K. Burke, and M. Ernzerhof, Generalized gradient approximation made simple, Phys. Rev. Lett., 77(1996), No. 18, p. 3865. doi: 10.1103/PhysRevLett.77.3865
      [27]
      L. Pan, Y.D. Lang, L. Zhao, D. Berardan, E. Amzallag, C. Xu, Y.F. Gu, C.C. Chen, L.D. Zhao, X.D. Shen, Y.N. Lyu, C.H. Lu, and Y.F. Wang, Realization of n-type and enhanced thermoelectric performance of p-type BiCuSeO by controlled iron incorporation, J. Mater. Chem. A, 6(2018), No. 27, p. 13340. doi: 10.1039/C8TA03521K
      [28]
      S. Conze, I. Veremchuk, M. Reibold, B. Matthey, A. Michaelis, Y. Grin, and I. Kinski, Magnéli phases Ti4O7 and Ti8O15 and their carbon nanocomposites via the thermal decomposition-precursor route, J. Solid State Chem., 229(2015), p. 235. doi: 10.1016/j.jssc.2015.04.037
      [29]
      Z. Jiang and W.F. Shangguan, Rational removal of stabilizer-ligands from platinum nanoparticles supported on photocatalysts by self-photocatalysis degradation, Catal. Today, 242(2015), p. 372. doi: 10.1016/j.cattod.2014.07.037
      [30]
      B.Q. Xu, D. Zhao, H.Y. Sohn, Y. Mohassab, B. Yang, Y.P. Lan, and J. Yang, Flash synthesis of Magnéli phase (TinO2n-1) nanoparticles by thermal plasma treatment of H2TiO3, Ceram. Int., 44(2018), No. 4, p. 3929. doi: 10.1016/j.ceramint.2017.11.184
      [31]
      Y. Wang, P. Miska, D. Pilloud, D. Horwat, F. Mücklich, and J.F. Pierson, Transmittance enhancement and optical band gap widening of Cu2O thin films after air annealing, J. Appl. Phys., 115(2014), No. 7, art. No. 073505. doi: 10.1063/1.4865957
      [32]
      T. Koketsu, J.W. Ma, B.J. Morgan, M. Body, C. Legein, W. Dachraoui, M. Giannini, A. Demortière, M. Salanne, F. Dardoize, H. Groult, O.J. Borkiewicz, K.W. Chapman, P. Strasser, and D. Dambournet, Reversible magnesium and aluminium ions insertion in cation-deficient anatase TiO2, Nat. Mater., 16(2017), No. 11, p. 1142. doi: 10.1038/nmat4976
      [33]
      H.Q. Liu, H.A. Ma, L.X. Chen, F. Wang, B.M. Liu, J.X. Chen, G.Y. Ji, Y.W. Zhang, and X.P. Jia, Pressure-induced thermoelectric properties of strongly reduced titanium oxides, CrystEngComm, 21(2019), No. 6, p. 1042. doi: 10.1039/C8CE02022A
      [34]
      J.P. Heremans, B. Wiendlocha, and A.M. Chamoire, Resonant levels in bulk thermoelectric semiconductors, Energy Environ. Sci., 5(2012), No. 2, p. 5510. doi: 10.1039/C1EE02612G
      [35]
      A. Tkach, J. Resende, K.V. Saravanan, M.E. Costa, P. Diaz-Chao, E. Guilmeau, O. Okhay, and P.M. Vilarinho, Abnormal grain growth as a method to enhance the thermoelectric performance of Nb-doped strontium titanate ceramics, ACS Sustainable Chem. Eng., 6(2018), No. 12, p. 15988. doi: 10.1021/acssuschemeng.8b03875
      [36]
      L. Xu, M.P. Garrett, and B. Hu, Doping effects on internally coupled Seebeck coefficient, electrical, and thermal conductivities in aluminum-doped TiO2, J. Phys. Chem. C, 116(2012), No. 24, p. 13020. doi: 10.1021/jp302652c
      [37]
      X.Y. Wan, Z.M. Liu, L. Sun, P. Jiang, and X.H. Bao, Synergetic enhancement of thermoelectric performance in a Bi0.5Sb1.5Te3/SrTiO3 heterostructure, J. Mater. Chem. A, 8(2020), No. 21, p. 10839. doi: 10.1039/D0TA04296J
      [38]
      R.Q. Zhang, Z.Z. Zhou, Q. Yao, N. Qi, and Z.Q. Chen, Significant improvement in thermoelectric performance of SnSe/SnS via nano-heterostructures, Phys. Chem. Chem. Phys., 23(2021), No. 6, p. 3794. doi: 10.1039/D0CP05548D
      [39]
      C. Jung, B. Dutta, P. Dey, S.J. Jeon, S. Han, H.M. Lee, J.S. Park, S.H. Yi, and P.P. Choi, Tailoring nanostructured NbCoSn-based thermoelectric materials via crystallization of an amorphous precursor, Nano Energy, 80(2021), art. No. 105518. doi: 10.1016/j.nanoen.2020.105518
      [40]
      G. Korotcenkov, V. Brinzari, and M.H. Ham, In2O3-based thermoelectric materials: The state of the art and the role of surface state in the improvement of the efficiency of thermoelectric conversion, Crystals, 8(2018), No. 1, art. No. 14. doi: 10.3390/cryst8010014
      [41]
      K.H. Lim, K.W. Wong, Y. Liu, Y. Zhang, D. Cadavid, A. Cabot, and K.M. Ng, Critical role of nanoinclusions in silver selenide nanocomposites as a promising room temperature thermoelectric material, J. Mater. Chem. C, 7(2019), No. 9, p. 2646. doi: 10.1039/C9TC00163H
      [42]
      S. Yang, H.Z. Gu, Z.H. Li, and A. Huang, Enhanced thermoelectric performance in aluminum-doped zinc oxide by porous architecture and nanoinclusions, J. Eur. Ceram. Soc., 41(2021), No. 6, p. 3466. doi: 10.1016/j.jeurceramsoc.2021.01.026

    Catalog


    • /

      返回文章
      返回