留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 4
Apr.  2022

图(12)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  2566
  • HTML全文浏览量:  422
  • PDF下载量:  122
  • 被引次数: 0
Aixiang Wu, Zhuen Ruan,  and Jiandong Wang, Rheological behavior of paste in metal mines, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 717-726. https://doi.org/10.1007/s12613-022-2423-6
Cite this article as:
Aixiang Wu, Zhuen Ruan,  and Jiandong Wang, Rheological behavior of paste in metal mines, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 717-726. https://doi.org/10.1007/s12613-022-2423-6
引用本文 PDF XML SpringerLink
特约综述

金属矿膏体的流变行为

  • 通讯作者:

    阮竹恩    E-mail: ustb_ruanzhuen@hotmail.com

文章亮点

  • (1) 介绍了金属矿膏体流变学的基本理论框架。
  • (2) 分析了膏体流变学研究的必要性、复杂性与特殊性。
  • (3) 系统归纳了膏体充填各个工艺环节中的膏体流变行为。
  • 膏体充填是矿山尾矿处置和采空区治理的有效途径之一。作为膏体充填技术创新与装备研发设计的基础,膏体流变学重点研究膏体充填工艺过程中膏体或充填体在应力、应变、温度、时间等作用下的流动与变形行为,其目的在于解决膏体充填的浓密、搅拌、输送和充填四个工艺过程中的工程问题。但是,因为膏体浓度高、物料组成复杂和不分层、不离析、不脱水的 “三不”工程特性,导致膏体流变学研究非常复杂。本文介绍了金属矿膏体流变框架体系,详细分析了全尾砂深度浓密流变行为、膏体搅拌流变行为、膏体输送流变行为和充填体流变行为。凝胶浓度、压缩屈服应力和干涉沉降系数构成了深度浓密过程全尾砂流变行为的表征体系,将C-C理论和B-W理论结合可分析深锥浓密机全区域内的浓密性能。膏体搅拌过程中,膏体的屈服应力和黏度随着搅拌过程的演化规律与相对结构系数的变化趋势一致。膏体输送过程中,管壁滑移和时温效应的耦合作用对膏体的流变特性和管输性能有显著影响。对于充填的蠕变行为,将损伤变量引入Burgers模型可构建出蠕变损伤本构模型。尽管本文全面介绍了膏体的流变行为,但仍需要进一步深入、系统地研究,以进一步丰富金属矿膏体流变学理论体系。
  • Invited Review

    Rheological behavior of paste in metal mines

    + Author Affiliations
    • Cemented paste backfill (CPB) has been one of the best practical approaches for tailings management and underground goaf treatment. Paste rheology is a science to study the flow and deformation behaviors of paste or filling body under the effects of stress, strain, temperature, and time during the CPB process. The goal of studying paste rheology is to solve the engineering problems existing in four key processes; that is, paste rheology should meet the engineering demands of thickening, mixing, transportation, and backfilling. However, paste rheology is extremely complicated due to its high concentration, materials complexity, and engineering characteristics of non-stratification, non-segregation, and non-bleeding. The rheological behavior of full tailings in deep thickening, rheological behavior of paste in mixing and pipeline transportation, and rheological behavior of filling body are introduced and discussed: (1) gel point, compressive yield stress, and the hindered settling function are adopted to characterize the rheological properties of full tailings in deep thickening. Combination of Coe–Clevenger theory and Buscall–White theory can also analyze the thickening performance in the whole area of deep cone thickener; (2) yield stress and viscosity are consistent with the evolution trend of the relative structure coefficient of paste in mixing; (3) coupling effect of wall slip and time–temperature dependency has a significant influence on the rheological properties and pipeline transportation; (4) damage variable is introduced to the Burgers model to describe the creep damage of the filling body. However, in-depth and systematic studies were still needed to establish a complete theoretical system of paste rheology in metal mines.
    • loading
    • [1]
      C. Wang, D. Harbottle, Q.X. Liu, and Z.H. Xu, Current state of fine mineral tailings treatment: A critical review on theory and practice, Miner. Eng., 58(2014), p. 113. doi: 10.1016/j.mineng.2014.01.018
      [2]
      J.C. Santamarina, L.A. Torres-Cruz, and R.C. Bachus, Why coal ash and tailings dam disasters occur, Science, 364(2019), No. 6440, p. 526. doi: 10.1126/science.aax1927
      [3]
      L.H. Silva Rotta, E. Alcântara, E. Park, R.G. Negri, Y.N. Lin, N. Bernardo, T.S.G. Mendes, and C.R. Souza Filho, The 2019 Brumadinho tailings dam collapse: Possible cause and impacts of the worst human and environmental disaster in Brazil, Int. J. Appl. Earth Obs., 90(2020), art. No. 102119. doi: 10.1016/j.jag.2020.102119
      [4]
      J. Kiventerä, P. Perumal, J. Yliniemi, and M. Illikainen, Mine tailings as a raw material in alkali activation: A review, Int. J. Miner. Metall. Mater., 27(2020), No. 8, p. 1009. doi: 10.1007/s12613-020-2129-6
      [5]
      C.C. Qi and A. Fourie, Cemented paste backfill for mineral tailings management: Review and future perspectives, Miner. Eng., 144(2019), art. No. 106025. doi: 10.1016/j.mineng.2019.106025
      [6]
      S.H. Yin, Y.J. Shao, A.X. Wu, H.J. Wang, X.H. Liu, and Y. Wang, A systematic review of paste technology in metal mines for cleaner production in China, J. Clean. Prod., 247(2020), art. No. 119590. doi: 10.1016/j.jclepro.2019.119590
      [7]
      A.X. Wu, Y. Yang, H.Y. Cheng, S.M. Chen, and Y. Han, Status and prospects of paste technology in China, Chin. J. Eng., 40(2018), No. 5, p. 517.
      [8]
      Y.Y. Tan, E. Davide, Y.C. Zhou, W.D. Song, and X. Meng, Long-term mechanical behavior and characteristics of cemented tailings backfill through impact loading, Int. J. Miner. Metall. Mater., 27(2020), No. 2, p. 140. doi: 10.1007/s12613-019-1878-6
      [9]
      H.Y. Cheng, S.C. Wu, H. Li, and X.Q. Zhang, Influence of time and temperature on rheology and flow performance of cemented paste backfill, Constr. Build. Mater., 231(2020), art. No. 117117. doi: 10.1016/j.conbuildmat.2019.117117
      [10]
      A.X. Wu, Z.E. Ruan, R. Bürger, S.H. Yin, J.D. Wang, and Y. Wang, Optimization of flocculation and settling parameters of tailings slurry by response surface methodology, Miner. Eng., 156(2020), art. No. 106488. doi: 10.1016/j.mineng.2020.106488
      [11]
      A.X. Wu and H.J. Wang, Theory and Technology of Cemented Paste Backfill in Metal Mines, Science Press, Beijing, 2015.
      [12]
      A.X. Wu, Rheology of Paste in Metal Mines, Metallurgical Industry Press, Beijing, 2019.
      [13]
      General Administration of Quality Supervision, People’s Republic of China, GB/T39489–2020: Technical Specification for the Total Tailings Paste Backfill, Standards Press of China, Beijing, 2020.
      [14]
      F. Schoenbrunn and M. Bach, The development of paste thickening and its application to the minerals industry; An industry review, BHM Berg Und Hüttenmännische Monatshefte, 160(2015), No. 6, p. 257.
      [15]
      H.Z. Jiao, A.X. Wu, H.J. Wang, S.P. Zhong, R.M. Ruan, and S.H. Yin, The solids concentration distribution in the deep cone thickener: A pilot scale test, Korean J. Chem. Eng., 30(2013), No. 2, p. 262. doi: 10.1007/s11814-012-0211-0
      [16]
      J.C. Serbon, L. Mac-Namara, and F. Schoenbrunn, Application of the FLSmidth deep cone technology to the fertilizer plants in OCP, Procedia Eng., 138(2016), p. 314. doi: 10.1016/j.proeng.2016.02.090
      [17]
      Z.E. Ruan, Y. Wang, A.X. Wu, S.H. Yin, and F. Jin, A theoretical model for the rake blockage mitigation in deep cone thickener: A case study of lead-zinc mine in China, Math. Probl. Eng., 2019(2019), art. No. 2130617. doi: 10.1155/2019/2130617
      [18]
      Z.E. Ruan, A.X. Wu, R. Bürger, F. Betancourt, Y.M. Wang, Y. Wang, H.Z. Jiao, and S.K. Wang, Effect of interparticle interactions on the yield stress of thickened flocculated copper mineral tailings slurry, Powder Technol., 392(2021), p. 278. doi: 10.1016/j.powtec.2021.07.008
      [19]
      Y. Wang, A.X. Wu, Z.E. Ruan, Z.H. Wang, Z.S. Wei, G.F. Yang, and Y.M. Wang, Reconstructed rheometer for direct monitoring of dewatering performance and torque in tailings thickening process, Int. J. Miner. Metall. Mater., 27(2020), No. 11, p. 1430. doi: 10.1007/s12613-020-2116-y
      [20]
      H. Li, A.X. Wu, H.J. Wang, H. Chen, and L.H. Yang, Changes in underflow solid fraction and yield stress in paste thickeners by circulation, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 349. doi: 10.1007/s12613-020-2184-z
      [21]
      H.J. Wang, L.H. Yang, H. Li, X. Zhou, and X.T. Wang, Using coupled rheometer-FBRM to study rheological properties and microstructure of cemented paste backfill, Adv. Mater. Sci. Eng., 2019(2019), art. No. 6813929. doi: 10.1155/2019/6813929
      [22]
      L.H. Yang, H.J. Wang, A.X. Wu, H. Li, A.B. Tchamba, and T.A. Bier, Shear thinning and thickening of cemented paste backfill, Appl. Rheol., 29(2019), No. 1, p. 80. doi: 10.1515/arh-2019-0008
      [23]
      L.H. Yang, H.J. Wang, H. Li, and X. Zhou, Effect of high mixing intensity on rheological properties of cemented paste backfill, Minerals, 9(2019), No. 4, art. No. 240. doi: 10.3390/min9040240
      [24]
      T. Belem and M. Benzaazoua, Design and application of underground mine paste backfill technology, Geotech. Geol. Eng., 26(2008), No. 2, p. 147. doi: 10.1007/s10706-007-9154-3
      [25]
      M. Fehrsen and R. Cooke, Paste fill pipeline distribution systems—Current status, [in] Rise of the Machines—The ‘State of the Art’ in Mining Mechanisation, Automation, Hydraulic Transportation and Communications, The South African Institute of Mining and Metallurgy, Johannesburg [2021-11-11]. https://www.saimm.co.za/Conferences/RiseOfMachines/026-Fehrsen.pdf
      [26]
      J.W. Calderón-Hernández, A. Sinatora, H.G. de Melo, A.P. Chaves, E.S. Mano, L.S. Leal Filho, J.L. Paiva, A.S. Braga, and T.C. Souza Pinto, Hydraulic convey of iron ore slurry: Pipeline wear and ore particle degradation in function of pumping time, Wear, 450-451(2020), art. No. 203272. doi: 10.1016/j.wear.2020.203272
      [27]
      A.X. Wu, Z.E. Ruan, Y.M. Wang, S.H. Yin, S.Y. Wang, Y. Wang, and J.D. Wang, Simulation of long-distance pipeline transportation properties of whole-tailings paste with high sliming, J. Cent. South Univ., 25(2018), No. 1, p. 141. doi: 10.1007/s11771-018-3724-9
      [28]
      Q.L. Zhang, Q.S. Chen, and X.M. Wang, Cemented backfilling technology of paste-like based on aeolian sand and tailings, Minerals, 6(2016), No. 4, art. No. 132. doi: 10.3390/min6040132
      [29]
      W. Sun, K.P. Hou, Z.Q. Yang, and Y.M. Wen, X-ray CT three-dimensional reconstruction and discrete element analysis of the cement paste backfill pore structure under uniaxial compression, Constr. Build. Mater., 138(2017), p. 69. doi: 10.1016/j.conbuildmat.2017.01.088
      [30]
      B.Q. Yan, F.H. Ren, M.F. Cai, and C. Qiao, Influence of new hydrophobic agent on the mechanical properties of modified cemented paste backfill, J. Mater. Res. Technol., 8(2019), No. 6, p. 5716. doi: 10.1016/j.jmrt.2019.09.039
      [31]
      A. Ghirian and M. Fall, Strength evolution and deformation behaviour of cemented paste backfill at early ages: Effect of curing stress, filling strategy and drainage, Int. J. Min. Sci. Technol., 26(2016), No. 5, p. 809. doi: 10.1016/j.ijmst.2016.05.039
      [32]
      E. Yilmaz and M. Fall, Paste Tailings Management, Springer, Cham, 2017.
      [33]
      C.C. Qi, A. Fourie, Q.S. Chen, X.L. Tang, Q.L. Zhang, and R.G. Gao, Data-driven modelling of the flocculation process on mineral processing tailings treatment, J. Clean. Prod., 196(2018), p. 505. doi: 10.1016/j.jclepro.2018.06.054
      [34]
      C.C. Qi, Q.S. Chen, and S.S. Kim, Integrated and intelligent design framework for cemented paste backfill: A combination of robust machine learning modelling and multi-objective optimization, Miner. Eng., 155(2020), art. No. 106422. doi: 10.1016/j.mineng.2020.106422
      [35]
      S.H. Yin, A.X. Wu, K.J. Hu, Y. Wang, and Y.K. Zhang, The effect of solid components on the rheological and mechanical properties of cemented paste backfill, Miner. Eng., 35(2012), p. 61. doi: 10.1016/j.mineng.2012.04.008
      [36]
      D. Feys, R. Cepuritis, S. Jacobsen, K. Lesage, E. Secrieru, and A. Yahia, Measuring rheological properties of cement pastes: Most common techniques, procedures and challenges, RILEM Tech. Lett., 2(2017), p. 129. doi: 10.21809/rilemtechlett.2017.43
      [37]
      A.X. Wu, H. Li, H.Y. Cheng, Y.M. Wang, C.P. Li, and Z.E. Ruan, Status and prospects of researches on rheology of paste backfill using unclassified-tailings (Part 1): Concepts, characteristics and models, Chin. J. Eng., 42(2020), No. 7, p. 803.
      [38]
      B.H. Yan, C.P. Li, A.X. Wu, S.Y. Wang, and H.Z. Hou, Analysis on influencing factors of coarse particles migration in pipeline transportation of paste slurry, Chin. J. Nonferrous Met., 28(2018), No. 10, p. 2143. doi: 10.1016/S1003-6326(18)64859-9
      [39]
      B.H. Yan, C.P. Li, A.X. Wu, H.J. Wang, and H.Z. Hou, Analysis of law of movement of coarse aggregate particles in pipeline transportation of paste, J. Cent. South Univ. Sci. Technol., 50(2019), No. 1, p. 172.
      [40]
      L. Pullum, L. Graham, M. Rudman, and R. Hamilton, High concentration suspension pumping, Miner. Eng., 19(2006), No. 5, p. 471. doi: 10.1016/j.mineng.2005.08.010
      [41]
      L. Pullum, D.V. Boger, and F. Sofra, Hydraulic mineral waste transport and storage, Annu. Rev. Fluid Mech., 50(2018), p. 157. doi: 10.1146/annurev-fluid-122316-045027
      [42]
      H.Y. Cheng, S.C. Wu, X.Q. Zhang, and A.X. Wu, Effect of particle gradation characteristics on yield stress of cemented paste backfill, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 10. doi: 10.1007/s12613-019-1865-y
      [43]
      A. Knight, F. Sofrà, A. Stickland, P. Scales, D. Lester, and R. Buscall, Variability of shear yield stress—Measurement and implications for mineral processing, [in] Proceedings of the 20th International Seminar on Paste and Thickened Tailings, Beijing, 2017.
      [44]
      A.X. Wu, H. Li, H.Y. Cheng, Y.M. Wang, C.P. Li, and Z.E. Ruan, Status and prospects of research on the rheology of paste backfill using unclassified tailings (Part 2): Rheological measurement and prospects, Chin. J. Eng., 43(2021), No. 4, p. 451.
      [45]
      W. Mbasha, I. Masalova, R. Haldenwang, and A. Malkin, The yield stress of cement pastes as obtained by different rheological approaches, Appl. Rheol., 25(2015), No. 5, art. No. 53517.
      [46]
      H.J. Wang, Y. Wang, A.X. Wu, Y.G. Zhai, and H.Z. Jiao, Research of paste new definition from the viewpoint of saturation ratio and bleeding rate, J. Wuhan Univ. Technol., 33(2011), No. 6, p. 85.
      [47]
      S.P. Usher and P.J. Scales, Steady state thickener modelling from the compressive yield stress and hindered settling function, Chem. Eng. J., 111(2005), No. 2-3, p. 253. doi: 10.1016/j.cej.2005.02.015
      [48]
      R. Buscall and L.R. White, The consolidation of concentrated suspensions. Part 1.—The theory of sedimentation, J. Chem. Soc., Faraday Trans. 1, 83(1987), No. 3, p. 873. doi: 10.1039/f19878300873
      [49]
      R.G. de Kretser, D.V. Boger, and P.J. Scales, Compressive rheology : An overview, Rheol. Rev., 2003, p. 125.
      [50]
      M. Rahimi, A.A. Abdollahzadeh, and B. Rezai, The effect of particle size, pH, and flocculant dosage on the gel point, effective solid stress, and thickener performance of a coal-washing plant, Int. J. Coal Prep. Util., 35(2015), No. 3, p. 125. doi: 10.1080/19392699.2014.996288
      [51]
      G.C. Li, Study on Size Change of Unclassified Tailings Flocs and Its Thickening Performance [Dissertation], University of Science and Technology Beijing, Beijing, 2019.
      [52]
      G.J. Kynch, A theory of sedimentation, Trans. Faraday Soc., 48(1952), p. 166. doi: 10.1039/tf9524800166
      [53]
      M. Nehdi and M.A. Rahman, Estimating rheological properties of cement pastes using various rheological models for different test geometry, gap and surface friction, Cem. Concr. Res., 34(2004), No. 11, p. 1993. doi: 10.1016/j.cemconres.2004.02.020
      [54]
      H.S. Coe and G.H. Clevenger, Methods for determining the capacities of slime-settling tanks, Trans. Am. Inst. Min. Eng., 55(1916), p. 356.
      [55]
      F. Moore, The rheology of ceramic slips and bodies, Trans. J. Br. Ceram. Soc., (1959), 9. 470.
      [56]
      A.X. Wu, X.H. Liu, H.J. Wang, H.Z. Jiao, and S.Z. Liu, Calculation of resistance in total tailings paste piping transportation based on time-varying behavior, J. China Univ. Min. Technol., 42(2013), No. 5, p. 736.
      [57]
      A.X. Wu, H.Y. Cheng, Y.M. Wang, H.J. Wang, X.H. Liu, and G.C. Li, Transport resistance characteristic of paste pipeline considering effect of wall slip, Chin. J. Nonferrous Met., 26(2016), No. 1, p. 180.
      [58]
      D.M. Kalyon, Apparent slip and viscoplasticity of concentrated suspensions, J. Rheol., 49(2005), No. 3, p. 621. doi: 10.1122/1.1879043
      [59]
      S. Haruna and M. Fall, Time- and temperature-dependent rheological properties of cemented paste backfill that contains superplasticizer, Powder Technol., 360(2020), p. 731. doi: 10.1016/j.powtec.2019.09.025
      [60]
      W.B. Xu, Y.L. Zhang, X.H. Zuo, and M. Hong, Time-dependent rheological and mechanical properties of silica fume modified cemented tailings backfill in low temperature environment, Cem. Concr. Compos., 114(2020), art. No. 103804. doi: 10.1016/j.cemconcomp.2020.103804
      [61]
      H.Y. Cheng, Characteristics of Rheological Parameters and Pipe Resistance under the Time Temperature Effect [Dissertation], University of Science and Technology Beijing, Beijing, 2018.
      [62]
      D. Wu, M. Fall, and S.J. Cai, Coupling temperature, cement hydration and rheological behaviour of fresh cemented paste backfill, Miner. Eng., 42(2013), p. 76. doi: 10.1016/j.mineng.2012.11.011
      [63]
      M. Fall, J.C. Célestin, M. Pokharel, and M. Touré, A contribution to understanding the effects of curing temperature on the mechanical properties of mine cemented tailings backfill, Eng. Geol., 114(2010), No. 3-4, p. 397. doi: 10.1016/j.enggeo.2010.05.016
      [64]
      Y. Wang, M. Fall, and A.X. Wu, Initial temperature-dependence of strength development and self-desiccation in cemented paste backfill that contains sodium silicate, Cem. Concr. Compos., 67(2016), p. 101. doi: 10.1016/j.cemconcomp.2016.01.005
      [65]
      Z. Aldhafeeri, M. Fall, M. Pokharel, and Z. Pouramini, Temperature dependence of the reactivity of cemented paste backfill, Appl. Geochem., 72(2016), p. 10. doi: 10.1016/j.apgeochem.2016.06.005
      [66]
      H.Y. Ran, Y.X. Guo, G.R. Feng, T.Y. Qi, and X.J. Du, Creep properties and resistivity-ultrasonic-AE responses of cemented gangue backfill column under high-stress area, Int. J. Min. Sci. Technol., 31(2021), No. 3, p. 401. doi: 10.1016/j.ijmst.2021.01.008
      [67]
      Q.L. Chang, W.J. Tang, Y. Xu, and H.Q. Zhou, Research on the width of filling body in gob-side entry retaining with high-water materials, Int. J. Min. Sci. Technol., 28(2018), No. 3, p. 519. doi: 10.1016/j.ijmst.2017.12.016
      [68]
      Q. Zhou and J.H. Liu, Study on creep property and damage evolution of rich-water packing material for mining, J. China Coal Soc., 43(2018), No. 7, p. 1878.
      [69]
      S.J. Chen, X.Y. Liu, Y. Han, Y.H. Guo, and K.Q. Ren, Experimental study of creep hardening characteristic and mechanism of filling paste, Chin. J. Rock Mech. Eng., 35(2016), No. 3, p. 570.
      [70]
      N. Yildirim, S. Shaler, W. West, E. Gajic, and R. Edgar, The usability of Burger body model on determination of oriented strand boards’ creep behavior, Adv. Compos. Lett., 29(2020), art. No. 2633366X2093589.
      [71]
      W. Sun, Macro-micro Mechanical Behaviors of Subsidence Disposal Paste and Compatible Deformation Control [Dissertation], University of Science and Technology Beijing, Beijing, 2016.

    Catalog


    • /

      返回文章
      返回