Cite this article as:

Aixiang Wu, Zhuen Ruan, and Jiandong Wang, Rheological behavior of paste in metal mines, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp.717-726. https://dx.doi.org/10.1007/s12613-022-2423-6
Aixiang Wu, Zhuen Ruan, and Jiandong Wang, Rheological behavior of paste in metal mines, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp.717-726. https://dx.doi.org/10.1007/s12613-022-2423-6
引用本文 PDF XML SpringerLink

金属矿膏体的流变行为

摘要: 膏体充填是矿山尾矿处置和采空区治理的有效途径之一。作为膏体充填技术创新与装备研发设计的基础,膏体流变学重点研究膏体充填工艺过程中膏体或充填体在应力、应变、温度、时间等作用下的流动与变形行为,其目的在于解决膏体充填的浓密、搅拌、输送和充填四个工艺过程中的工程问题。但是,因为膏体浓度高、物料组成复杂和不分层、不离析、不脱水的 “三不”工程特性,导致膏体流变学研究非常复杂。本文介绍了金属矿膏体流变框架体系,详细分析了全尾砂深度浓密流变行为、膏体搅拌流变行为、膏体输送流变行为和充填体流变行为。凝胶浓度、压缩屈服应力和干涉沉降系数构成了深度浓密过程全尾砂流变行为的表征体系,将C-C理论和B-W理论结合可分析深锥浓密机全区域内的浓密性能。膏体搅拌过程中,膏体的屈服应力和黏度随着搅拌过程的演化规律与相对结构系数的变化趋势一致。膏体输送过程中,管壁滑移和时温效应的耦合作用对膏体的流变特性和管输性能有显著影响。对于充填的蠕变行为,将损伤变量引入Burgers模型可构建出蠕变损伤本构模型。尽管本文全面介绍了膏体的流变行为,但仍需要进一步深入、系统地研究,以进一步丰富金属矿膏体流变学理论体系。

 

Rheological behavior of paste in metal mines

Abstract: Cemented paste backfill (CPB) has been one of the best practical approaches for tailings management and underground goaf treatment. Paste rheology is a science to study the flow and deformation behaviors of paste or filling body under the effects of stress, strain, temperature, and time during the CPB process. The goal of studying paste rheology is to solve the engineering problems existing in four key processes; that is, paste rheology should meet the engineering demands of thickening, mixing, transportation, and backfilling. However, paste rheology is extremely complicated due to its high concentration, materials complexity, and engineering characteristics of non-stratification, non-segregation, and non-bleeding. The rheological behavior of full tailings in deep thickening, rheological behavior of paste in mixing and pipeline transportation, and rheological behavior of filling body are introduced and discussed: (1) gel point, compressive yield stress, and the hindered settling function are adopted to characterize the rheological properties of full tailings in deep thickening. Combination of Coe–Clevenger theory and Buscall–White theory can also analyze the thickening performance in the whole area of deep cone thickener; (2) yield stress and viscosity are consistent with the evolution trend of the relative structure coefficient of paste in mixing; (3) coupling effect of wall slip and time–temperature dependency has a significant influence on the rheological properties and pipeline transportation; (4) damage variable is introduced to the Burgers model to describe the creep damage of the filling body. However, in-depth and systematic studies were still needed to establish a complete theoretical system of paste rheology in metal mines.

 

/

返回文章
返回