留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 4
Apr.  2022

图(11)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  2597
  • HTML全文浏览量:  453
  • PDF下载量:  130
  • 被引次数: 0
Yanyu Zhao, Wei Chen, Shusen Cheng,  and Lifeng Zhang, Mathematical simulation of hot metal desulfurization during KR process coupled with an unreacted core model, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 758-766. https://doi.org/10.1007/s12613-022-2425-4
Cite this article as:
Yanyu Zhao, Wei Chen, Shusen Cheng,  and Lifeng Zhang, Mathematical simulation of hot metal desulfurization during KR process coupled with an unreacted core model, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 758-766. https://doi.org/10.1007/s12613-022-2425-4
引用本文 PDF XML SpringerLink
研究论文

耦合未反应核模型的KR铁水脱硫过程数值模拟

  • 通讯作者:

    陈威    E-mail: weichen@ysu.edu.cn

    张立峰    E-mail: zhanglifeng@ncut.edu.cn

文章亮点

  • (1) 系统地研究了铁水预处理过程多相流场以及脱硫剂分散的影响规律。
  • (2) 开发了耦合CFD和未反应核模型的KR铁水预处理脱硫过程动力学模型。
  • (3) 提出了脱硫速率常数与湍动能耗散率以及铁水硫含量与时间和湍动能耗散率之间的关系式。
  • 硫元素对绝大多数钢材的机械加工性能、抗腐蚀性能和磁性能等均有显著恶化作用,如何将钢中硫元素高效稳定的去除以及精确的控制仍然是冶金过程的研究热点。本研究通过建立耦合的湍动能-湍动能耗散率湍流模型(turbulent kinetic energy-turbulent dissipation rate, kε)、多相流模型(volume-of-fluid, VOF)、硫元素用户自定义标量传输模型(user-defined scalar, UDS)、离散相(discrete-phase model, DPM)脱硫剂运动模型及未反应核脱硫动力学模型,研究了实际机械搅拌(Kanbara reactor, KR)铁水预处理过程多相流场分布、脱硫剂运动和分散以及脱硫动力学。通过不同时刻下硫含量预测值与实际检测值的对比证明了目前脱硫数值模型的准确性以及确定了硫元素通过扩散边界层到达脱硫剂表面的外扩散为目前工况下的脱硫动力学限制性步骤。研究结果表明,脱硫速率常数随着搅拌桨转速的增大而增大,转速110 r/min下脱硫速率常数是30 r/min的三倍左右;铁水中平均硫含量随时间变化基本呈现指数函数的分布规律。脱硫剂加入完毕以后,脱硫速率降低速率也随时间逐渐下降,且转速越大,脱硫速率降低的越快;提出了KR搅拌过程湍动能耗散率ε与脱硫速率常数β之间的一般关系式$ \beta = 0.00688 \cdot {\varepsilon ^{0.265}} $,进而得到了应用范围更广的硫含量与湍动能耗散率ε及反应时间t的关系式$ [\% {\text{S}}] = {[\% {\text{S}}]_0} \cdot {{\text{e}}^{ - 0.00688 \cdot {\varepsilon ^{0.265}} \cdot t}} $
  • Research Article

    Mathematical simulation of hot metal desulfurization during KR process coupled with an unreacted core model

    + Author Affiliations
    • A three-dimensional mathematical model was established to predict the multiphase flow, motion and dispersion of desulfurizer particles, and desulfurization of hot metal during the Kanbara reactor (KR) process. The turbulent kinetic energy–turbulent dissipation rate (k–ε) turbulence model, volume-of-fluid multiphase model, discrete-phase model, and unreacted core model for the reaction between the hot metal and particles were coupled. The measured sulfur content of the hot metal with time during the actual KR process was employed to validate the current mathematical model. The distance from the lowest point of the liquid level to the bottom of the ladle decreased from 3170 to 2191 mm when the rotation speed increased from 30 to 110 r/min, which had a great effect on the dispersion of desulfurizer particles. The critical rotation speed for the vortex to reach the upper edge of the stirring impeller was 70 r/min when the immersion depth was 1500 mm. The desulfurization rate increased with the increase in the impeller rotation speed, whereas the influence of the immersion depth was relatively small. Formulas for different rotation parameters on the desulfurization rate constant and turbulent energy dissipation rate were proposed to evaluate the variation in sulfur content over time.
    • loading
    • [1]
      L. Lin and J.Q. Zeng, Consideration of green intelligent steel processes and narrow window stability control technology on steel quality, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1264. doi: 10.1007/s12613-020-2246-2
      [2]
      C.B. Shi, Y. Huang, J.X. Zhang, J. Li, and X. Zheng, Review on desulfurization in electroslag remelting, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 18. doi: 10.1007/s12613-020-2075-3
      [3]
      K. Kanbara, T. Nisugi, and O. Shiraishi, Desulfurization process using mechanical impeller, Tetsu-to-Hagané, 58(1972), No. 4, p. S26.
      [4]
      Y. Nakai, I. Sumi, H. Matsuno, N. Kikuchi, and Y. Kishimoto, Effect of flux dispersion behavior on desulfurization of hot metal, ISIJ Int., 50(2010), No. 3, p. 403. doi: 10.2355/isijinternational.50.403
      [5]
      Y. Liu, M. Sano, T.A. Zhang, Q. Wang, and J.C. He, Intensification of bubble disintegration and dispersion by mechanical stirring in gas injection refining, ISIJ Int., 49(2009), No. 1, p. 17. doi: 10.2355/isijinternational.49.17
      [6]
      S. Horiuchi, M.A. Uddin, Y. Kato, Y. Takahashi, and Y.I. Uchida, Mass transfer between different phases in a mechanically-stirred vessel and its comparison with that in a gas-stirred one, ISIJ Int., 54(2014), No. 1, p. 87. doi: 10.2355/isijinternational.54.87
      [7]
      Y. Nakai, Y. Hino, I. Sumi, N. Kikuchi, Y. Uchida, and Y. Miki, Effect of flux addition method on hot metal desulfurization by mechanical stirring process, ISIJ Int., 55(2015), No. 7, p. 1398. doi: 10.2355/isijinternational.55.1398
      [8]
      M. Li, Y.B. Tan, J.L. Sun, D. Xie, and Z. Liu, Drawdown mechanism of light particles in baffled stirred tank for the KR desulphurization process, Chin. J. Chem. Eng., 27(2019), No. 2, p. 247. doi: 10.1016/j.cjche.2018.05.019
      [9]
      Y. Nakai, I. Sumi, N. Kikuchi, K. Tanaka, and Y. Miki, Powder blasting in hot metal desulfurization by mechanical stirring process, ISIJ Int., 57(2017), No. 6, p. 1029. doi: 10.2355/isijinternational.ISIJINT-2017-063
      [10]
      Y. Liu, Z.M. Zhang, S. Masamichi, J. Zhang, P. Shao, and T.A. Zhang, Improvement of impeler blade structure for gas injection refining under mechanical stirring, J. Iron Steel Res. Int., 21(2014), No. 2, p. 135. doi: 10.1016/S1006-706X(14)60022-4
      [11]
      M.L. He, N. Wang, M. Chen, M. Chen, and C.F. Li, Distribution and motion behavior of desulfurizer particles in hot metal with mechanical stirring, Powder Technol., 361(2020), p. 455. doi: 10.1016/j.powtec.2019.05.056
      [12]
      Q. Wang, S.Y. Jia, F.G. Tan, G.Q. Li, D.G. Ouyang, S.H. Zhu, W. Sun, and Z. He, Numerical study on desulfurization behavior during kanbara reactor hot metal treatment, Metall. Mater. Trans. B, 52(2021), No. 2, p. 1085. doi: 10.1007/s11663-021-02080-2
      [13]
      T. Xu, G. Song, Y. Yang, P.X. Ge, and L.X. Tang, Visualization and simulation of steel metallurgy processes, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1387. doi: 10.1007/s12613-021-2283-5
      [14]
      V.V. Visuri, T. Vuolio, T. Haas, and T. Fabritius, A review of modeling hot metal desulfurization, Steel Res. Int., 91(2020), No. 4, art. No. 1900454. doi: 10.1002/srin.201900454
      [15]
      Y.J. Lee and K.W. Yi, Improvement of desulfurization efficiency via numerical simulation analysis of transport phenomena of kanbara reactor process, Met. Mater. Int., (2021). DOI: 10.1007/s12540-021-00973-0
      [16]
      D. Lindström and S.C. Du, Kinetic study on desulfurization of hot metal using CaO and CaC2, Metall. Mater. Trans. B, 46(2015), No. 1, p. 83. doi: 10.1007/s11663-014-0195-8
      [17]
      T. Mitsuo, T. Shōji, Y. Hatta, H. Ono, H. Mori, and T. Kai, Improvement of desulfurization by addition of aluminum to hot metal in the lime injection process, Trans. Jpn. Inst. Met., 23(1982), No. 12, p. 768. doi: 10.2320/matertrans1960.23.768
      [18]
      J.H. Ji, R.Q. Liang, and J.C. He, Numerical simulation on bubble behavior of disintegration and dispersion in stirring-injection magnesium desulfurization process, ISIJ Int., 57(2017), No. 3, p. 453. doi: 10.2355/isijinternational.ISIJINT-2016-511
      [19]
      K. Feng, A.J. Xu, D.F. He, and L.Z. Yang, Case-based reasoning method based on mechanistic model correction for predicting endpoint sulphur content of molten iron in KR desulphurization, Ironmaking Steelmaking, 47(2020), No. 7, p. 799. doi: 10.1080/03019233.2019.1615307
      [20]
      F. Oeters, Kinetic treatment of chemical reactions in emulsion metallurgy, Steel Res., 56(1985), No. 2, p. 69. doi: 10.1002/srin.198500600
      [21]
      K. Nakanishi, N. Bessho, Y. Takada, A. Ejima, M. Kuga, J. Katsuki, and M. Kawana, On the desulfurization of the molten metal in an open ladle stirred by an impeller modified by gas injection, Tetsu-to-Hagané, 64(1978), No. 10, p. 1528.
      [22]
      W. Chen, Y. Ren, and L.F. Zhang, Large eddy simulation on the two-phase flow in a water model of continuous casting strand with gas injection, Steel Res. Int., 90(2019), No. 4, art. No. 1800287. doi: 10.1002/srin.201800287
      [23]
      W. Chen, Y. Ren, L.F. Zhang, and P.R. Scheller, Numerical simulation of steel and argon gas two-phase flow in continuous casting using LES + VOF + DPM model, JOM, 71(2019), No. 3, p. 1158. doi: 10.1007/s11837-018-3255-8
      [24]
      W. Chen and L.F. Zhang, Effects of interphase forces on multiphase flow and bubble distribution in continuous casting strands, Metall. Mater. Trans. B, 52(2021), No. 1, p. 528. doi: 10.1007/s11663-020-02046-w
      [25]
      W. Chen, L.F. Zhang, Y.D. Wang, S. Ji, Y. Ren, and W. Yang, Mathematical simulation of two-phase flow and slag entrainment during steel bloom continuous casting, Powder Technol., 390(2021), p. 539. doi: 10.1016/j.powtec.2021.05.101
      [26]
      F. Oeters, P. Strohmenger, and W. Pluschkell, Kinetik der entschwefelung von roheisenschmelzen mit kalk und erdgas, Arch. Eisenhüttenwesen, 44(1973), No. 10, p. 727.
      [27]
      Y. Sano, N. Yamaguchi, and T. Adachi, Mass transfer coefficients for suspended particles in agitated vessels and bubble columns, J. Chem. Eng. Jpn., 7(1974), No. 4, p. 255. doi: 10.1252/jcej.7.255
      [28]
      S. Asai, M. Kawachi, and I. Muchi, Mass transfer rate in ladle refining processes, [in] Proceedings of the Proceedings - SCANINJECT 3, 3rd International Conference on Refining of Iron and Steel by Powder Injection, Lulea, 1983, p. 1.
      [29]
      H. Lachmund, Y.K. Xie, T. Buhles, and W. Pluschkell, Slag emulsification during liquid steel desulphurisation by gas injection into the ladle, Steel Res. Int., 74(2003), No. 2, p. 77. doi: 10.1002/srin.200300164

    Catalog


    • /

      返回文章
      返回