留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 4
Apr.  2022

图(9)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  3381
  • HTML全文浏览量:  837
  • PDF下载量:  231
  • 被引次数: 0
Huihui Yu, Zhihong Cao, Zheng Zhang, Xiankun Zhang,  and Yue Zhang, Flexible electronics and optoelectronics of 2D van der Waals materials, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 671-690. https://doi.org/10.1007/s12613-022-2426-3
Cite this article as:
Huihui Yu, Zhihong Cao, Zheng Zhang, Xiankun Zhang,  and Yue Zhang, Flexible electronics and optoelectronics of 2D van der Waals materials, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 671-690. https://doi.org/10.1007/s12613-022-2426-3
引用本文 PDF XML SpringerLink
特约综述

基于二维范德华材料的柔性电子及光电子器件

  • 通讯作者:

    张先坤    E-mail: zhangxiankun@ustb.edu.cn

    张跃    E-mail: yuezhang@ustb.edu.cn

文章亮点

  • (1) 系统总结了二维范德华材料和二维范德华异质结的物理性质及它们在柔性电子及光电子器件应用中的优势。
  • (2) 重点阐述了二维范德华材料及异质结在柔性场效应晶体管、逻辑器件、射频器件以及人工神经形态计算单元等柔性电子学器件方面的前沿进展。
  • (3) 归纳了石墨烯、过渡金属硫化物、第ⅥA族与其他主族结合形成的二维范德华材料以及二维范德华多元合金材料等材料体系在柔性光电探测器方向的研究动态。
  • (4) 面向未来便携式的可穿戴柔性光电与光电子器件发展需求,展望了二维范德华材料在柔性电子及光电子学中的应用前景及挑战,提出了二维范德华材料柔性电子与光电器件的发展蓝图。
  • 由于良好的形状适应性,柔性电子及光电子器件在医疗健康、电子皮肤、自动驾驶、可折叠屏以及各种可穿戴电子设备等未来智能工业中展现出独特的优势。然而,随着传统半导体材料柔性电子及光电器件的尺寸不断减小,异质结界面晶格失配导致的界面散射现象愈发明显,使得材料和器件的性能衰退严重,无法满足柔性电子及光电子器件小型化的需求;同时,传统材料杨氏模量较小和应变极限范围小导致其形状自适应性较差,也阻碍了柔性可穿戴电子器件多种功能的实现。二维范德华材料具有更大的比表面积、无悬挂键的表面、层间弱范德华作用力、优异电学和光电性能以及良好的机械性能;可以在不考虑考虑晶格失配的情况下,通过外延生长或者机械堆垛的方式构筑范德华异质结。因此,二维范德华材料在未来柔性智能设备的多功能器件应用中具有独特的优势。经过了十几年的发展,基于二维范德华材料及其范德华异质结的电子与光电器件功能和性能日趋完善,涌现出多种新材料体系和新结构器件。在这篇综述中,我们首先分析了二维范德华材料及其异质结在构筑柔性器件中的物理性质及结构优势,并从器件功能化以及材料体系角度出发,归纳了近年来二维柔性先进电子及光电子器件的研究进展,展望了二维范德华材料在柔性电子及光电子学中面临的挑战及未来的发展方向。

  • Invited Review

    Flexible electronics and optoelectronics of 2D van der Waals materials

    + Author Affiliations
    • Flexible electronics and optoelectronics exhibit inevitable trends in next-generation intelligent industries, including healthcare and wellness, electronic skins, the automotive industry, and foldable or rollable displays. Traditional bulk-material-based flexible devices considerably rely on lattice-matched crystal structures and are usually plagued by unavoidable chemical disorders at the interface. Two-dimensional van der Waals materials (2D VdWMs) have exceptional multifunctional properties, including large specific area, dangling-bond-free interface, plane-to-plane van der Waals interactions, and excellent mechanical, electrical, and optical properties. Thus, 2D VdWMs have considerable application potential in functional intelligent flexible devices. To utilize the unique properties of 2D VdWMs and their van der Waals heterostructures, new designs and configurations of electronics and optoelectronics have emerged. However, these new designs and configurations do not consider lattice mismatch and process incompatibility issues. In this review, we summarized the recently reported 2D VdWM-based flexible electronic and optoelectronic devices with various functions thoroughly. Moreover, we identified the challenges and opportunities for further applications of 2D VdWM-based flexible electronics and optoelectronics.

    • loading
    • [1]
      Y.T. Zheng, J.J. Wei, J.L. Liu, L.X. Chen, K. An, X.T. Zhang, H.T. Ye, X.P. Ouyang, and C.M. Li, Carbon materials: The burgeoning promise in electronics, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 404. doi: 10.1007/s12613-021-2358-3
      [2]
      Z.Y. Lin, Y. Huang, and X.F. Duan, Van der Waals thin-film electronics, Nat. Electron., 2(2019), No. 9, p. 378. doi: 10.1038/s41928-019-0301-7
      [3]
      N. Li, Q.Q. Wang, C. Shen, Z. Wei, H. Yu, J. Zhao, X.B. Lu, G.L. Wang, C.L. He, L. Xie, J.Q. Zhu, L.J. Du, R. Yang, D.X. Shi, and G.Y. Zhang, Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors, Nat. Electron., 3(2020), No. 11, p. 711. doi: 10.1038/s41928-020-00475-8
      [4]
      M.J. Dai, H.Y. Chen, F.K. Wang, Y.X. Hu, S. Wei, J. Zhang, Z.G. Wang, T.Y. Zhai, and P.A. Hu, Robust piezo-phototronic effect in multilayer γ-InSe for high-performance self-powered flexible photodetectors, ACS Nano, 13(2019), No. 6, p. 7291. doi: 10.1021/acsnano.9b03278
      [5]
      X.Q. Chen, K. Shehzad, L. Gao, M.S. Long, H. Guo, S.C. Qin, X.M. Wang, F.Q. Wang, Y. Shi, W.D. Hu, Y. Xu, and X.R. Wang, Graphene hybrid structures for integrated and flexible optoelectronics, Adv. Mater., 32(2020), No. 27, art. No. 1902039.
      [6]
      T. Yang, Y.P. Zheng, K.C. Chou, and X.M. Hou, Tunable fabrication of single-crystalline CsPbI3 nanobelts and their application as photodetectors, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 1030. doi: 10.1007/s12613-020-2173-2
      [7]
      Y. Kim, A. Chortos, W.T. Xu, Y.X. Liu, J.Y. Oh, D. Son, J. Kang, A.M. Foudeh, C.X. Zhu, Y. Lee, S.M. Niu, J. Liu, R. Pfattner, Z.A. Bao, and T.W. Lee, A bioinspired flexible organic artificial afferent nerve, Science, 360(2018), No. 6392, p. 998. doi: 10.1126/science.aao0098
      [8]
      Y.M. Song, Y.Z. Xie, V. Malyarchuk, J.L. Xiao, I. Jung, K.J. Choi, Z.J. Liu, H. Park, C.F. Lu, R.H. Kim, R. Li, K.B. Crozier, Y.G. Huang, and J.A. Rogers, Digital cameras with designs inspired by the arthropod eye, Nature, 497(2013), No. 7447, p. 95. doi: 10.1038/nature12083
      [9]
      V.K. Sangwan and M.C. Hersam, Neuromorphic nanoelectronic materials, Nat. Nanotechnol., 15(2020), No. 7, p. 517. doi: 10.1038/s41565-020-0647-z
      [10]
      X. Zhao, Z. Zhang, Q.L. Liao, X.C. Xun, F.F. Gao, L.X. Xu, Z. Kang, and Y. Zhang, Self-powered user-interactive electronic skin for programmable touch operation platform, Sci. Adv., 6(2020), No. 28, art. No. eaba4294. doi: 10.1126/sciadv.aba4294
      [11]
      D. Akinwande, N. Petrone, and J. Hone, Two-dimensional flexible nanoelectronics, Nat. Commun., 5(2014), art. No. 5678. doi: 10.1038/ncomms6678
      [12]
      L.F. Xue, Z. Zhang, L.X. Xu, F.F. Gao, X. Zhao, X.C. Xun, B. Zhao, Z. Kang, Q.L. Liao, and Y. Zhang, Information accessibility oriented self-powered and ripple-inspired fingertip interactors with auditory feedback, Nano Energy, 87(2021), art. No. 106117. doi: 10.1016/j.nanoen.2021.106117
      [13]
      X. Zhao, Z. Zhang, L.X. Xu, F.F. Gao, B. Zhao, T. Ouyang, Z. Kang, Q.L. Liao, and Y. Zhang, Fingerprint-inspired electronic skin based on triboelectric nanogenerator for fine texture recognition, Nano Energy, 85(2021), art. No. 106001. doi: 10.1016/j.nanoen.2021.106001
      [14]
      M. Choi, Y.J. Park, B.K. Sharma, S.R. Bae, S.Y. Kim, and J.H. Ahn, Flexible active-matrix organic light-emitting diode display enabled by MoS2 thin-film transistor, Sci. Adv., 4(2018), No. 4, art. No. eaas8721. doi: 10.1126/sciadv.aas8721
      [15]
      D. Kim, D. Lee, Y. Lee, and D.Y. Jeon, Work-function engineering of graphene anode by bis(trifluoromethanesulfonyl) amide doping for efficient polymer light-emitting diodes, Adv. Funct. Mater., 23(2013), No. 40, p. 5049. doi: 10.1002/adfm201301386
      [16]
      J.Y. Du, M.Q. Zhang, and J.J. Tian, Controlled crystal orientation of two-dimensional Ruddlesden–Popper halide perovskite films for solar cells, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 49. doi: 10.1007/s12613-021-2341-z
      [17]
      J.H. Zheng, L.X. Zhu, Z.T. Shen, F.M. Li, L.Y. Ling, H.L. Li, and C. Chen, Effects of the incorporation amounts of CdS and Cd(SCN2H4)2Cl2 on the performance of perovskite solar cells, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 283. doi: 10.1007/s12613-021-2316-0
      [18]
      G.X. Qu, J.L. Cheng, X.D. Li, D.M. Yuan, P.N. Chen, X.L. Chen, B. Wang, and H.S. Peng, A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode, Adv. Mater., 28(2016), No. 19, p. 3646. doi: 10.1002/adma.201600689
      [19]
      J. Jiang, W.N. Hu, D.D. Xie, J.L. Yang, J. He, Y.L. Gao, and Q. Wan, 2D electric-double-layer phototransistor for photoelectronic and spatiotemporal hybrid neuromorphic integration, Nanoscale, 11(2019), No. 3, p. 1360. doi: 10.1039/C8NR07133K
      [20]
      J.L. Du, H.H. Yu, B.S. Liu, M.Y. Hong, Q.L. Liao, Z. Zhang, and Y. Zhang, Strain engineering in 2D material-based flexible optoelectronics, Small Methods, 5(2021), No. 1, art. No. 2000919. doi: 10.1002/smtd.202000919
      [21]
      H.H. Yu, Q.L. Liao, Z. Kang, Z.Y. Wang, B.S. Liu, X.K. Zhang, J.L. Du, Y. Ou, M.Y. Hong, J.K. Xiao, Z. Zhang, and Y. Zhang, Atomic-thin ZnO sheet for visible-blind ultraviolet photodetection, Small, 16(2020), No. 47, art. No. 2005520. doi: 10.1002/smll.202005520
      [22]
      R.Q. Yang, N. Liang, X.Y. Chen, L.W. Wang, G.X. Song, Y.C. Ji, N. Ren, Y.W. Lü, J. Zhang, and X. Yu, Sn/Sn3O4−x heterostructure rich in oxygen vacancies with enhanced visible light photocatalytic oxidation performance, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 150. doi: 10.1007/s12613-020-2131-z
      [23]
      M.H. Wu, Z.B. Zhang, X.Z. Xu, Z.H. Zhang, Y.R. Duan, J.C. Dong, R.X. Qiao, S.F. You, L. Wang, J.J. Qi, D.X. Zou, N.Z. Shang, Y.B. Yang, H. Li, L. Zhu, J.L. Sun, H.J. Yu, P. Gao, X.D. Bai, Y. Jiang, Z.J. Wang, F. Ding, D.P. Yu, E.G. Wang, and K.H. Liu, Seeded growth of large single-crystal copper foils with high-index facets, Nature, 581(2020), No. 7809, p. 406. doi: 10.1038/s41586-020-2298-5
      [24]
      J. Park, J.C. Hwang, G.G. Kim, and J.U. Park, Flexible electronics based on one-dimensional and two-dimensional hybrid nanomaterials, InfoMat, 2(2020), No. 1, p. 33. doi: 10.1002/inf2.12047
      [25]
      H.J. Jiang, L. Zheng, Z. Liu, and X.W. Wang, Two-dimensional materials: From mechanical properties to flexible mechanical sensors, InfoMat, 2(2020), No. 6, p. 1077. doi: 10.1002/inf2.12072
      [26]
      X.K. Zhang, Q.L. Liao, Z. Kang, B.S. Liu, Y. Ou, J.L. Du, J.K. Xiao, L. Gao, H.Y. Shan, Y. Luo, Z.Y. Fang, P.D. Wang, Z. Sun, Z. Zhang, and Y. Zhang, Self-healing originated Van der Waals homojunctions with strong interlayer coupling for high-performance photodiodes, ACS Nano, 13(2019), No. 3, p. 3280. doi: 10.1021/acsnano.8b09130
      [27]
      B.S. Liu, J.L. Du, H.H. Yu, M.Y. Hong, Z. Kang, Z. Zhang, and Y. Zhang, The coupling effect characterization for van der Waals structures based on transition metal dichalcogenides, Nano Res., 14(2021), No. 6, p. 1734. doi: 10.1007/s12274-020-3253-3
      [28]
      J.Y. Zhang, Y. Yu, P. Wang, C. Luo, X. Wu, Z.Q. Sun, J.L. Wang, W.D. Hu, and G.Z. Shen, Characterization of atomic defects on the photoluminescence in two-dimensional materials using transmission electron microscope, InfoMat, 1(2019), No. 1, p. 85. doi: 10.1002/inf2.12002
      [29]
      K.K. Fu, J. Cheng, T. Li, and L.B. Hu, Flexible batteries: From mechanics to devices, ACS Energy Lett., 1(2016), No. 5, p. 1065. doi: 10.1021/acsenergylett.6b00401
      [30]
      L. Gao, Flexible device applications of 2D semiconductors, Small, 13(2017), No. 35, art. No. 1603994. doi: 10.1002/smll.201603994
      [31]
      C. Xie and F. Yan, Flexible photodetectors based on novel functional materials, Small, 13(2017), No. 43, art. No. 1701822. doi: 10.1002/smll.201701822
      [32]
      W.N. Zhu, S. Park, M.N. Yogeesh, K.M. McNicholas, S.R. Bank, and D. Akinwande, Black phosphorus flexible thin film transistors at gighertz frequencies, Nano Lett., 16(2016), No. 4, p. 2301. doi: 10.1021/acs.nanolett.5b04768
      [33]
      L.M. Wu, J.N. Shi, Z. Zhou, J.H. Yan, A.W. Wang, C. Bian, J.J. Ma, R.S. Ma, H.T. Liu, J.C. Chen, Y. Huang, W. Zhou, L.H. Bao, M. Ouyang, S.T. Pantelides, and H.J. Gao, InSe/hBN/graphite heterostructure for high-performance 2D electronics and flexible electronics, Nano Res., 13(2020), No. 4, p. 1127. doi: 10.1007/s12274-020-2757-1
      [34]
      S. Conti, L. Pimpolari, G. Calabrese, R. Worsley, S. Majee, D.K. Polyushkin, M. Paur, S. Pace, D.H. Keum, F. Fabbri, G. Iannaccone, M. Macucci, C. Coletti, T. Mueller, C. Casiraghi, and G. Fiori, Low-voltage 2D materials-based printed field-effect transistors for integrated digital and analog electronics on paper, Nat. Commun., 11(2020), art. No. 3566. doi: 10.1038/s41467-020-17297-z
      [35]
      S. Liu, Q.L. Liao, S.N. Lu, Z. Zhang, G.J. Zhang, and Y. Zhang, Strain modulation in graphene/ZnO nanorod film Schottky junction for enhanced photosensing performance, Adv. Funct. Mater., 26(2016), No. 9, p. 1347. doi: 10.1002/adfm.201503905
      [36]
      J.L. Du, Q.L. Liao, M.Y. Hong, B.S. Liu, X.K. Zhang, H.H. Yu, J.K. Xiao, L. Gao, F.F. Gao, Z. Kang, Z. Zhang, and Y. Zhang, Piezotronic effect on interfacial charge modulation in mixed-dimensional van der Waals heterostructure for ultrasensitive flexible photodetectors, Nano Energy, 58(2019), p. 85. doi: 10.1016/j.nanoen.2019.01.024
      [37]
      Q. Lian, X.T. Zhu, X.D. Wang, W. Bai, J. Yang, Y.Y. Zhang, R.J. Qi, R. Huang, W.D. Hu, X.D. Tang, J.L. Wang, and J.H. Chu, Ultrahigh-detectivity photodetectors with van der Waals epitaxial CdTe single-crystalline films, Small, 15(2019), No. 17, art. No. 1900236. doi: 10.1002/smll.201900236
      [38]
      L.N. Du, C. Wang, J.Z. Fang, B. Wei, W.Q. Xiong, X.T. Wang, L.J. Ma, X.F. Wang, Z.M. Wei, C.X. Xia, J.B. Li, Z.C. Wang, X.Z. Zhang, and Q. Liu, A ternary SnS1.26Se0.76 alloy for flexible broadband photodetectors, RSC Adv., 9(2019), No. 25, p. 14352. doi: 10.1039/C9RA01734H
      [39]
      J.L. Du, Q.L. Liao, B.S. Liu, X.K. Zhang, H.H. Yu, Y. Ou, J.K. Xiao, Z. Kang, H.N. Si, Z. Zhang, and Y. Zhang, Gate-controlled polarity-reversible photodiodes with ambipolar 2D semiconductors, Adv. Funct. Mater., 31(2021), No. 8, art. No. 2007559. doi: 10.1002/adfm.202007559
      [40]
      M.Z. Liao, Z. Wei, L.J. Du, Q.Q. Wang, J. Tang, H. Yu, F.F. Wu, J.J. Zhao, X.Z. Xu, B. Han, K.H. Liu, P. Gao, T. Polcar, Z.P. Sun, D.X. Shi, R. Yang, and G.Y. Zhang, Precise control of the interlayer twist angle in large scale MoS2 homostructures, Nat. Commun., 11(2020), art. No. 2153. doi: 10.1038/s41467-020-16056-4
      [41]
      W.S. Zheng, T. Xie, Y. Zhou, Y.L. Chen, W. Jiang, S.L. Zhao, J.X. Wu, Y.M. Jing, Y. Wu, G.C. Chen, Y.F. Guo, J.B. Yin, S.Y. Huang, H.Q. Xu, Z.F. Liu, and H.L. Peng, Patterning two-dimensional chalcogenide crystals of Bi2Se3 and In2Se3 and efficient photodetectors, Nat. Commun., 6(2015), art. No. 6972. doi: 10.1038/ncomms7972
      [42]
      S.R. Tamalampudi, Y.Y. Lu, U.R. Kumar, R. Sankar, C.D. Liao, B.K. Moorthy, C.H. Cheng, F.C. Chou, and Y.T. Chen, High performance and bendable few-layered InSe photodetectors with broad spectral response, Nano Lett., 14(2014), No. 5, p. 2800. doi: 10.1021/nl500817g
      [43]
      P.A. Hu, L.F. Wang, M. Yoon, J. Zhang, W. Feng, X.N. Wang, Z.Z. Wen, J.C. Idrobo, Y. Miyamoto, D.B. Geohegan, and K. Xiao, Highly responsive ultrathin GaS nanosheet photodetectors on rigid and flexible substrates, Nano Lett., 13(2013), No. 4, p. 1649. doi: 10.1021/nl400107k
      [44]
      Z.X. Wang, M. Safdar, M. Mirza, K. Xu, Q.S. Wang, Y. Huang, F.M. Wang, X.Y. Zhan, and J. He, High-performance flexible photodetectors based on GaTe nanosheets, Nanoscale, 7(2015), No. 16, p. 7252. doi: 10.1039/C4NR07313D
      [45]
      Y.B. Zhou, Y.F. Nie, Y.J. Liu, K. Yan, J.H. Hong, C.H. Jin, Y. Zhou, J.B. Yin, Z.F. Liu, and H.L. Peng, Epitaxy and photoresponse of two-dimensional GaSe crystals on flexible transparent mica sheets, ACS Nano, 8(2014), No. 2, p. 1485. doi: 10.1021/nn405529r
      [46]
      X. Zhou, Q. Zhang, L. Gan, H.Q. Li, and T.Y. Zhai, Large-size growth of ultrathin SnS2 nanosheets and high performance for phototransistors, Adv. Funct. Mater., 26(2016), No. 24, p. 4405. doi: 10.1002/adfm.201600318
      [47]
      Y. Yan, W.Q. Xiong, S.S. Li, K. Zhao, X.T. Wang, J. Su, X.H. Song, X.P. Li, S. Zhang, H. Yang, X.F. Liu, L. Jiang, T.Y. Zhai, C.X. Xia, J.B. Li, and Z.M. Wei, Direct wide bandgap 2D GeSe2 monolayer toward anisotropic UV photodetection, Adv. Opt. Mater., 7(2019), No. 19, art. No. 1900622. doi: 10.1002/adom.201900622
      [48]
      X.Z. Hu, P. Huang, K.L. Liu, B. Jin, X. Zhang, X.W. Zhang, X. Zhou, and T.Y. Zhai, Salt-assisted growth of ultrathin GeSe rectangular flakes for phototransistors with ultrahigh responsivity, ACS Appl. Mater. Interfaces, 11(2019), No. 26, p. 23353. doi: 10.1021/acsami.9b06425
      [49]
      G.H. Chen, Y.Q. Yu, K. Zheng, T. Ding, W.L. Wang, Y. Jiang, and Q. Yang, Fabrication of ultrathin Bi2S3 nanosheets for high-performance, flexible, visible-NIR photodetectors, Small, 11(2015), No. 24, p. 2848. doi: 10.1002/smll.201403508
      [50]
      P. Luo, F.W. Zhuge, F.K. Wang, L.Y. Lian, K.L. Liu, J.B. Zhang, and T.Y. Zhai, PbSe quantum dots sensitized high-mobility Bi2O2Se nanosheets for high-performance and broadband photodetection beyond 2 μm, ACS Nano, 13(2019), No. 8, p. 9028. doi: 10.1021/acsnano.9b03124
      [51]
      Y.R. Tao, J.Q. Chen, J.J. Wu, Y. Wu, and X.C. Wu, Flexible ultraviolet-visible photodetector based on HfS3 nanobelt film, J. Alloys Compd., 658(2016), p. 6. doi: 10.1016/j.jallcom.2015.10.184
      [52]
      F.K. Wang, T. Gao, Q. Zhang, Z.Y. Hu, B. Jin, L. Li, X. Zhou, H.Q. Li, G. Van Tendeloo, and T.Y. Zhai, Liquid-alloy-assisted growth of 2D ternary Ga2In4S9 toward high-performance UV photodetection, Adv. Mater., 31(2019), No. 2, art. No. 1806306. doi: 10.1002/adma.201806306
      [53]
      Q.S. Wang, K. Xu, Z.X. Wang, F. Wang, Y. Huang, M. Safdar, X.Y. Zhan, F.M. Wang, Z.Z. Cheng, and J. He, Van der Waals epitaxial ultrathin two-dimensional nonlayered semiconductor for highly efficient flexible optoelectronic devices, Nano Lett., 15(2015), No. 2, p. 1183. doi: 10.1021/nl504258m
      [54]
      J. Xia, Y.X. Zhao, L. Wang, X.Z. Li, Y.Y. Gu, H.Q. Cheng, and X.M. Meng, Van der Waals epitaxial two-dimensional CdSxSe(1−x) semiconductor alloys with tunable-composition and application to flexible optoelectronics, Nanoscale, 9(2017), No. 36, p. 13786. doi: 10.1039/C7NR04968D
      [55]
      P. Perumal, R.K. Ulaganathan, R. Sankar, Y.M. Liao, T.M. Sun, M.W. Chu, F.C. Chou, Y.T. Chen, M.H. Shih, and Y.F. Chen, Ultra-thin layered ternary single crystals [Sn(SxSe1−x)2] with bandgap engineering for high performance phototransistors on versatile substrates, Adv. Funct. Mater., 26(2016), No. 21, p. 3630. doi: 10.1002/adfm.201600081
      [56]
      Z.Q. Zheng, J.D. Yao, and G.W. Yang, Centimeter-scale deposition of Mo0.5W0.5Se2 alloy film for high-performance photodetectors on versatile substrates, ACS Appl. Mater. Interfaces, 9(2017), No. 17, p. 14920. doi: 10.1021/acsami.7b02166
      [57]
      J.D. Yao, Z.Q. Zheng, and G.W. Yang, Promoting the performance of layered-material photodetectors by alloy engineering, ACS Appl. Mater. Interfaces, 8(2016), No. 20, p. 12915. doi: 10.1021/acsami.6b03691
      [58]
      Y. Liu, Y. Huang, and X.F. Duan, Van der Waals integration before and beyond two-dimensional materials, Nature, 567(2019), No. 7748, p. 323. doi: 10.1038/s41586-019-1013-x
      [59]
      Y. Liu, N.O. Weiss, X.D. Duan, H.C. Cheng, Y. Huang, and X.F. Duan, Van der Waals heterostructures and devices, Nat. Rev. Mater., 1(2016), No. 9, art. No. 16042. doi: 10.1038/natrevmats.2016.42
      [60]
      F. Zhou and W. Ji, Giant three-photon absorption in monolayer MoS2 and its application in near-infrared photodetection, Laser Photonics Rev., 11(2017), No. 4, art. No. 1700021. doi: 10.1002/lpor.201700021
      [61]
      H.S. Lee, S.W. Min, Y.G. Chang, M.K. Park, T. Nam, H. Kim, J.H. Kim, S. Ryu, and S. Im, MoS2 nanosheet phototransistors with thickness-modulated optical energy gap, Nano Lett., 12(2012), No. 7, p. 3695. doi: 10.1021/nl301485q
      [62]
      W.J. Zhao, R.M. Ribeiro, M. Toh, A. Carvalho, C. Kloc, A.H.C. Neto, and G. Eda, Origin of indirect optical transitions in few-layer MoS2, WS2, and WSe2, Nano Lett., 13(2013), No. 11, p. 5627. doi: 10.1021/nl403270k
      [63]
      T.S. Li, M.L. Li, Y. Lin, H.B. Cai, Y.M. Wu, H.Y. Ding, S.W. Zhao, N. Pan, and X.P. Wang, Probing exciton complexes and charge distribution in inkslab-like WSe2 homojunction, ACS Nano, 12(2018), No. 5, p. 4959. doi: 10.1021/acsnano.8b02060
      [64]
      D. Wu, A.J. Pak, Y.N. Liu, Y. Zhou, X.Y. Wu, Y.H. Zhu, M. Lin, Y. Han, Y. Ren, H.L. Peng, Y.H. Tsai, G.S. Hwang, and K.J. Lai, Thickness-dependent dielectric constant of few-layer In2Se3 nanoflakes, Nano Lett., 15(2015), No. 12, p. 8136. doi: 10.1021/acs.nanolett.5b03575
      [65]
      L. Ye, P. Wang, W.J. Luo, F. Gong, L. Liao, T.D. Liu, L. Tong, J.F. Zang, J.B. Xu, and W.D. Hu, Highly polarization sensitive infrared photodetector based on black phosphorus-on-WSe2 photogate vertical heterostructure, Nano Energy, 37(2017), p. 53. doi: 10.1016/j.nanoen.2017.05.004
      [66]
      L. Tong, X.Y. Huang, P. Wang, L. Ye, M. Peng, L.C. An, Q.D. Sun, Y. Zhang, G.M. Yang, Z. Li, F. Zhong, F. Wang, Y.X. Wang, M. Motlag, W.Z. Wu, G.J. Cheng, and W.D. Hu, Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature, Nat. Commun., 11(2020), art. No. 2308. doi: 10.1038/s41467-020-16125-8
      [67]
      S.X. Yang, S. Tongay, Y. Li, Q. Yue, J.B. Xia, S.S. Li, J.B. Li, and S.H. Wei, Layer-dependent electrical and optoelectronic responses of ReSe2 nanosheet transistors, Nanoscale, 6(2014), No. 13, p. 7226. doi: 10.1039/c4nr01741b
      [68]
      J.Y. Liu, Y.H. Zhou, Y. Lin, M.L. Li, H.B. Cai, Y.C. Liang, M.Y. Liu, Z.G. Huang, F.C. Lai, F. Huang, and W.F. Zheng, Anisotropic photoresponse of the ultrathin GeSe nanoplates grown by rapid physical vapor deposition, ACS Appl. Mater. Interfaces, 11(2019), No. 4, p. 4123. doi: 10.1021/acsami.8b19306
      [69]
      Y.H. Wang, J.B. Pang, Q.L. Cheng, L. Han, Y.F. Li, X. Meng, B. Ibarlucea, H.B. Zhao, F. Yang, H.Y. Liu, H. Liu, W.J. Zhou, X. Wang, M.H. Rummeli, Y. Zhang, and G. Cuniberti, Applications of 2D-layered palladium diselenide and its van der Waals heterostructures in electronics and optoelectronics, Nano-Micro Lett., 13(2021), No. 1, art. No. 143. doi: 10.1007/s40820-021-00660-0
      [70]
      A. Reserbat-Plantey, D. Kalita, Z. Han, L. Ferlazzo, S. Autier-Laurent, K. Komatsu, C. Li, R. Weil, A. Ralko, L. Marty, S. Guéron, N. Bendiab, H. Bouchiat, and V. Bouchiat, Strain superlattices and macroscale suspension of graphene induced by corrugated substrates, Nano Lett., 14(2014), No. 9, p. 5044. doi: 10.1021/nl5016552
      [71]
      C. Lee, X.D. Wei, J.W. Kysar, and J. Hone, Measurement of the elastic properties and intrinsic strength of monolayer graphene, Science, 321(2008), No. 5887, p. 385. doi: 10.1126/science.1157996
      [72]
      J.U. Lee, S. Woo, J. Park, H.C. Park, Y.W. Son, and H. Cheong, Strain-shear coupling in bilayer MoS2, Nat. Commun., 8(2017), art. No. 1370. doi: 10.1038/s41467-017-01487-3
      [73]
      B.S. Liu, Q.L. Liao, X.K. Zhang, J.L. Du, Y. Ou, J.K. Xiao, Z. Kang, Z. Zhang, and Y. Zhang, Strain-engineered van der Waals interfaces of mixed-dimensional heterostructure arrays, ACS Nano, 13(2019), No. 8, p. 9057. doi: 10.1021/acsnano.9b03239
      [74]
      S. Bertolazzi, J. Brivio, and A. Kis, Stretching and breaking of ultrathin MoS2, ACS Nano, 5(2011), No. 12, p. 9703. doi: 10.1021/nn203879f
      [75]
      A. Castellanos-Gomez, M. Poot, G.A. Steele, H.S.J. van der Zant, N. Agraït, and G. Rubio-Bollinger, Elastic properties of freely suspended MoS2 nanosheets, Adv. Mater., 24(2012), No. 6, p. 772. doi: 10.1002/adma.201103965
      [76]
      R. Zhang, V. Koutsos, and R. Cheung, Elastic properties of suspended multilayer WSe2, Appl. Phys. Lett., 108(2016), No. 4, art. No. 042104. doi: 10.1063/1.4940982
      [77]
      J.Y. Wang, Y. Li, Z.Y. Zhan, T. Li, L. Zhen, and C.Y. Xu, Elastic properties of suspended black phosphorus nanosheets, Appl. Phys. Lett., 108(2016), No. 1, art. No. 013104. doi: 10.1063/1.4939233
      [78]
      J. Robertson, Band offsets of wide-band-gap oxides and implications for future electronic devices, J. Vac. Sci. Technol. B, 18(2000), No. 3, p. 1785. doi: 10.1116/1.591472
      [79]
      C.H. Jin, E.Y. Ma, O. Karni, E.C. Regan, F. Wang, and T.F. Heinz, Ultrafast dynamics in van der Waals heterostructures, Nat. Nanotechnol., 13(2018), No. 11, p. 994. doi: 10.1038/s41565-018-0298-5
      [80]
      X. Xiong, J.Y. Kang, S.Y. Liu, A.Y. Tong, T.Y. Fu, X.F. Li, R. Huang, and Y.Q. Wu, Nonvolatile logic and ternary content-addressable memory based on complementary black phosphorus and rhenium disulfide transistors, Adv. Mater., (2021), art. No. 2106321. doi: 10.1002/adma.202106321
      [81]
      Y.A. Wang, Y. Zheng, J. Gao, T.Y. Jin, E.L. Li, X. Lian, X. Pan, C. Han, H.P. Chen, and W. Chen, Band-tailored van der Waals heterostructure for multilevel memory and artificial synapse, InfoMat, 3(2021), No. 8, p. 917. doi: 10.1002/inf2.12230
      [82]
      Y. Cao, X.Y. Zhu, J.H. Jiang, C.Y. Liu, J. Zhou, J. Ni, J.J. Zhang, and J.B. Pang, Rotational design of charge carrier transport layers for optimal antimony trisulfide solar cells and its integration in tandem devices, Sol. Energy Mater. Sol. Cells, 206(2020), art. No. 110279. doi: 10.1016/j.solmat.2019.110279
      [83]
      X. Xiong, M.Q. Huang, B. Hu, X.F. Li, F. Liu, S.C. Li, M.C. Tian, T.Y. Li, J. Song, and Y.Q. Wu, A transverse tunnelling field-effect transistor made from a van der Waals heterostructure, Nat. Electron., 3(2020), No. 2, p. 106. doi: 10.1038/s41928-019-0364-5
      [84]
      P. Lin, L.P. Zhu, D. Li, L. Xu, and Z.L. Wang, Tunable WSe2–CdS mixed-dimensional van der Waals heterojunction with a piezo-phototronic effect for an enhanced flexible photodetector, Nanoscale, 10(2018), No. 30, p. 14472. doi: 10.1039/C8NR04376K
      [85]
      H.L. Wu, Z. Kang, Z.H. Zhang, Z. Zhang, H.N. Si, Q.L. Liao, S.C. Zhang, J. Wu, X.K. Zhang, and Y. Zhang, Interfacial charge behavior modulation in perovskite quantum dot-monolayer MoS2 0D–2D mixed-dimensional van der Waals heterostructures, Adv. Funct. Mater., 28(2018), No. 34, art. No. 1802015. doi: 10.1002/adfm.201802015
      [86]
      X.K. Zhang, B.S. Liu, L. Gao, H.H. Yu, X.Z. Liu, J.L. Du, J.K. Xiao, Y.H. Liu, L. Gu, Q.L. Liao, Z. Kang, Z. Zhang, and Y. Zhang, Near-ideal van der Waals rectifiers based on all-two-dimensional Schottky junctions, Nat. Commun., 12(2021), art. No. 1522. doi: 10.1038/s41467-021-21861-6
      [87]
      F. Schwierz, Graphene transistors, Nat. Nanotechnol., 5(2010), No. 7, p. 487. doi: 10.1038/nnano.2010.89
      [88]
      Y. Liu, J. Guo, W.J. Song, P.Q. Wang, V. Gambin, Y. Huang, and X.F. Duan, Ultra-steep slope impact ionization transistors based on graphene/InAs heterostructures, Small Struct., 2(2021), No. 1, art. No. 2000039. doi: 10.1002/sstr.202000039
      [89]
      B.J. Kim, H. Jang, S.K. Lee, B.H. Hong, J.H. Ahn, and J.H. Cho, High-performance flexible graphene field effect transistors with ion gel gate dielectrics, Nano Lett., 10(2010), No. 9, p. 3464. doi: 10.1021/nl101559n
      [90]
      S.K. Lee, B.J. Kim, H. Jang, S.C. Yoon, C.J. Lee, B.H. Hong, J.A. Rogers, J.H. Cho, and J.H. Ahn, Stretchable graphene transistors with printed dielectrics and gate electrodes, Nano Lett., 11(2011), No. 11, p. 4642. doi: 10.1021/nl202134z
      [91]
      J. Lee, T.J. Ha, H.F. Li, K.N. Parrish, M. Holt, A. Dodabalapur, R.S. Ruoff, and D. Akinwande, 25 GHz embedded-gate graphene transistors with high-k dielectrics on extremely flexible plastic sheets, ACS Nano, 7(2013), No. 9, p. 7744. doi: 10.1021/nn403487y
      [92]
      C.S. Zhao, C.L. Tan, D.H. Lien, X.H. Song, M. Amani, M. Hettick, H.Y.Y. Nyein, Z. Yuan, L. Li, M.C. Scott, and A. Javey, Evaporated tellurium thin films for p-type field-effect transistors and circuits, Nat. Nanotechnol., 15(2020), No. 1, p. 53. doi: 10.1038/s41565-019-0585-9
      [93]
      H. Jang, Y.J. Park, X. Chen, T. Das, M.S. Kim, and J.H. Ahn, Graphene-based flexible and stretchable electronics, Adv. Mater., 28(2016), No. 22, p. 4184. doi: 10.1002/adma.201504245
      [94]
      G. Fiori, F. Bonaccorso, G. Iannaccone, T. Palacios, D. Neumaier, A. Seabaugh, S.K. Banerjee, and L. Colombo, Electronics based on two-dimensional materials, Nat. Nanotechnol., 9(2014), No. 10, p. 768. doi: 10.1038/nnano.2014.207
      [95]
      M. Hosseini, M. Elahi, M. Pourfath, and D. Esseni, Strain-induced modulation of electron mobility in single-layer transition metal dichalcogenides MX2 (M = Mo, W; X = S, Se), IEEE Trans. Electron Devices, 62(2015), No. 10, p. 3192. doi: 10.1109/TED.2015.2461617
      [96]
      J.K. Xiao, Z. Kang, B.S. Liu, X.K. Zhang, J.L. Du, K.L. Chen, H.H. Yu, Q.L. Liao, Z. Zhang, and Y. Zhang, Record-high saturation current in end-bond contacted monolayer MoS2 transistors, Nano Res., 15(2022), No. 1, p. 475. doi: 10.1007/s12274-021-3504-y
      [97]
      J. Pu, Y. Yomogida, K.K. Liu, L.J. Li, Y. Iwasa, and T. Takenobu, Highly flexible MoS2 thin-film transistors with ion gel dielectrics, Nano Lett., 12(2012), No. 8, p. 4013. doi: 10.1021/nl301335q
      [98]
      H.Y. Chang, S.X. Yang, J. Lee, L. Tao, W.S. Hwang, D. Jena, N.S. Lu, and D. Akinwande, High-performance, highly bendable MoS2 transistors with high-k dielectrics for flexible low-power systems, ACS Nano, 7(2013), No. 6, p. 5446. doi: 10.1021/nn401429w
      [99]
      W.G. Song, H.J. Kwon, J. Park, J. Yeo, M. Kim, S. Park, S. Yun, K.U. Kyung, C.P. Grigoropoulos, S. Kim, and Y.K. Hong, High-performance flexible multilayer MoS2 transistors on solution-based polyimide substrates, Adv. Funct. Mater., 26(2016), No. 15, p. 2426. doi: 10.1002/adfm.201505019
      [100]
      J.S. Rhyee, J. Kwon, P. Dak, J.H. Kim, S.M. Kim, J. Park, Y.K. Hong, W.G. Song, I. Omkaram, M.A. Alam, and S. Kim, High-mobility transistors based on large-area and highly crystalline CVD-grown MoSe2 films on insulating substrates, Adv. Mater., 28(2016), No. 12, p. 2316. doi: 10.1002/adma.201504789
      [101]
      W.N. Zhu, M.N. Yogeesh, S.X. Yang, S.H. Aldave, J.S. Kim, S. Sonde, L. Tao, N.S. Lu, and D. Akinwande, Flexible black phosphorus ambipolar transistors, circuits and AM demodulator, Nano Lett., 15(2015), No. 3, p. 1883. doi: 10.1021/nl5047329
      [102]
      K.S. Novoselov, A. Mishchenko, A. Carvalho, and A.H.C. Neto, 2D materials and van der Waals heterostructures, Science, 353(2016), No. 6298, art. No. aac9439. doi: 10.1126/science.aac9439
      [103]
      N. Petrone, T. Chari, I. Meric, L. Wang, K.L. Shepard, and J. Hone, Flexible graphene field-effect transistors encapsulated in hexagonal boron nitride, ACS Nano, 9(2015), No. 9, p. 8953. doi: 10.1021/acsnano.5b02816
      [104]
      J. Yoon, W. Park, G.Y. Bae, Y. Kim, H.S. Jang, Y. Hyun, S.K. Lim, Y.H. Kahng, W.K. Hong, B.H. Lee, and H.C. Ko, Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes, Small, 9(2013), No. 19, p. 3295.
      [105]
      G.H. Lee, Y.J. Yu, X. Cui, N. Petrone, C.H. Lee, M.S. Choi, D.Y. Lee, C. Lee, W.J. Yoo, K. Watanabe, T. Taniguchi, C. Nuckolls, P. Kim, and J. Hone, Flexible and transparent MoS2 field-effect transistors on hexagonal boron nitride–graphene heterostructures, ACS Nano, 7(2013), No. 9, p. 7931. doi: 10.1021/nn402954e
      [106]
      S. Liu, Q.L. Liao, S.N. Lu, X.H. Zhang, Z. Zhang, G.J. Zhang, and Y. Zhang, Triboelectricity-assisted transfer of graphene for flexible optoelectronic applications, Nano Res., 9(2016), No. 4, p. 899. doi: 10.1007/s12274-015-0972-y
      [107]
      K.F. Mak, C. Lee, J. Hone, J. Shan, and T.F. Heinz, Atomically thin MoS2: A new direct-gap semiconductor, Phys. Rev. Lett., 105(2010), No. 13, art. No. 136805. doi: 10.1103/PhysRevLett.105.136805
      [108]
      L. Wang, X.Z. Xu, L.N. Zhang, R.X. Qiao, M.H. Wu, Z.C. Wang, S. Zhang, J. Liang, Z.H. Zhang, Z.B. Zhang, W. Chen, X.D. Xie, J.Y. Zong, Y.W. Shan, Y. Guo, M. Willinger, H. Wu, Q.Y. Li, W.L. Wang, P. Gao, S.W. Wu, Y. Zhang, Y. Jiang, D.P. Yu, E.G. Wang, X.D. Bai, Z.J. Wang, F. Ding, and K.H. Liu, Epitaxial growth of a 100-square-centimetre single-crystal hexagonal boron nitride monolayer on copper, Nature, 570(2019), No. 7759, p. 91. doi: 10.1038/s41586-019-1226-z
      [109]
      S.K. Su, C.P. Chuu, M.Y. Li, C.C. Cheng, H.S.P. Wong, and L.J. Li, Layered semiconducting 2D materials for future transistor applications, Small Struct., 2(2021), No. 5, art. No. 2000103. doi: 10.1002/sstr.202000103
      [110]
      M. Zhao, Y. Ye, Y.M. Han, Y. Xia, H.Y. Zhu, S.Q. Wang, Y. Wang, D.A. Muller, and X. Zhang, Large-scale chemical assembly of atomically thin transistors and circuits, Nat. Nanotechnol., 11(2016), No. 11, p. 954. doi: 10.1038/nnano.2016.115
      [111]
      T. Das, X. Chen, H. Jang, I.K. Oh, H. Kim, and J.H. Ahn, Highly flexible hybrid CMOS inverter based on Si nanomembrane and molybdenum disulfide, Small, 12(2016), No. 41, p. 5720. doi: 10.1002/smll.201602101
      [112]
      J. Pu, K. Funahashi, C.H. Chen, M.Y. Li, L.J. Li, and T. Takenobu, Highly flexible and high-performance complementary inverters of large-area transition metal dichalcogenide monolayers, Adv. Mater., 28(2016), No. 21, p. 4111. doi: 10.1002/adma.201503872
      [113]
      H.W. Shi, L. Ding, D.L. Zhong, J. Han, L.J. Liu, L. Xu, P.K. Sun, H. Wang, J.S. Zhou, L. Fang, Z.Y. Zhang, and L.M. Peng, Radiofrequency transistors based on aligned carbon nanotube arrays, Nat. Electron., 4(2021), No. 6, p. 405. doi: 10.1038/s41928-021-00594-w
      [114]
      W.N. Zhu, S. Park, M.N. Yogeesh, and D. Akinwande, Advancements in 2D flexible nanoelectronics: From material perspectives to RF applications, Flexible Printed Electron., 2(2017), No. 4, art. No. 043001. doi: 10.1088/2058-8585/aa84a4
      [115]
      J. Lee, H.Y. Chang, T.J. Ha, H.F. Li, R.S. Ruoff, A. Dodabalapur, and D. Akinwande, High-performance flexible nanoelectronics: 2D atomic channel materials for low-power digital and high-frequency analog devices, [in] 2013 IEEE International Electron Devices Meeting, Washington, 2013. p. 19.2.1.
      [116]
      R. Cheng, J.W. Bai, L. Liao, H.L. Zhou, Y. Chen, L.X. Liu, Y.C. Lin, S. Jiang, Y. Huang, and X.F. Duan, High-frequency self-aligned graphene transistors with transferred gate stacks, PNAS, 109(2012), No. 29, p. 11588. doi: 10.1073/pnas.1205696109
      [117]
      S. Park, S.H. Shin, M.N. Yogeesh, A.L. Lee, S. Rahimi, and D. Akinwande, Extremely high-frequency flexible graphene thin-film transistors, IEEE Electron Device Lett., 37(2016), No. 4, p. 512. doi: 10.1109/LED.2016.2535484
      [118]
      S. Park, W.N. Zhu, H.Y. Chang, M.N. Yogeesh, R. Ghosh, S.K. Banerjee, and D. Akinwande, High-frequency prospects of 2D nanomaterials for flexible nanoelectronics from baseband to sub-THz devices, [in] 2015 IEEE International Electron Devices Meeting, Washington, 2015, p. 32.1.1.
      [119]
      H.Y. Chang, M.N. Yogeesh, R. Ghosh, A. Rai, A. Sanne, S.X. Yang, N.S. Lu, S.K. Banerjee, and D. Akinwande, Large-area monolayer MoS2 for flexible low-power RF nanoelectronics in the GHz regime, Adv. Mater., 28(2016), No. 9, p. 1818. doi: 10.1002/adma.201504309
      [120]
      X. Zhang, J. Grajal, J.L. Vazquez-Roy, U. Radhakrishna, X.X. Wang, W. Chern, L. Zhou, Y.X. Lin, P.C. Shen, X. Ji, X. Ling, A. Zubair, Y.H. Zhang, H. Wang, M. Dubey, J. Kong, M. Dresselhaus, and T. Palacios, Two-dimensional MoS2-enabled flexible rectenna for Wi-Fi-band wireless energy harvesting, Nature, 566(2019), No. 7744, p. 368. doi: 10.1038/s41586-019-0892-1
      [121]
      G.S. Gund, M.G. Jung, K.Y. Shin, and H.S. Park, Two-dimensional metallic niobium diselenide for sub-micrometer-thin antennas in wireless communication systems, ACS Nano, 13(2019), No. 12, p. 14114. doi: 10.1021/acsnano.9b06732
      [122]
      L. Wang, W.G. Liao, S.L. Wong, Z.G. Yu, S.F. Li, Y.F. Lim, X.W. Feng, W.C. Tan, X. Huang, L. Chen, L. Liu, J.S. Chen, X. Gong, C.X. Zhu, X.K. Liu, Y.W. Zhang, D.Z. Chi, and K.W. Ang, Artificial synapses based on multiterminal memtransistors for neuromorphic application, Adv. Funct. Mater., 29(2019), No. 25, art. No. 1901106. doi: 10.1002/adfm.201901106
      [123]
      J.L. Wen, W.H. Tang, Z. Kang, Q.L. Liao, M.Y. Hong, J.L. Du, X.K. Zhang, H.H. Yu, H.N. Si, Z. Zhang, and Y. Zhang, Direct charge trapping multilevel memory with graphdiyne/MoS2 van der Waals heterostructure, Adv. Sci., 8(2021), No. 21, art. No. 2101417. doi: 10.1002/advs.202101417
      [124]
      X.W. Feng, Y.D. Li, L. Wang, S. Chen, Z.G. Yu, W.C. Tan, N. Macadam, G.H. Hu, L. Huang, L. Chen, X. Gong, D.Z. Chi, T. Hasan, A.V.Y. Thean, Y.W. Zhang, and K.W. Ang, A fully printed flexible MoS2 memristive artificial synapse with femtojoule switching energy, Adv. Electron. Mater., 5(2019), No. 12, art. No. 1900740. doi: 10.1002/aelm.201900740
      [125]
      C.J. Wan, Y.H. Liu, P. Feng, W. Wang, L.Q. Zhu, Z.P. Liu, Y. Shi, and Q. Wan, Flexible metal oxide/graphene oxide hybrid neuromorphic transistors on flexible conducting graphene substrates, Adv. Mater., 28(2016), No. 28, p. 5878. doi: 10.1002/adma.201600820
      [126]
      B.J. Sun, J.B. Pang, Q.L. Cheng, S. Zhang, Y.F. Li, C.C. Zhang, D.H. Sun, B. Ibarlucea, Y. Li, D. Chen, H.M. Fan, Q.F. Han, M.X. Chao, H. Liu, J.G. Wang, G. Cuniberti, L. Han, and W.J. Zhou, Synthesis of wafer-scale graphene with chemical vapor deposition for electronic device applications, Adv. Mater. Technol., 6(2021), No. 7, art. No. 2000744. doi: 10.1002/admt.202000744
      [127]
      Y.H. Wang, Y.H. Zhang, Q.L. Cheng, J.B. Pang, Y.J. Chu, H. Ji, J.W. Gao, Y.K. Han, L. Han, H. Liu, and Y. Zhang, Large area uniform PtSx synthesis on sapphire substrate for performance improved photodetectors, Appl. Mater. Today, 25(2021), art. No. 101176. doi: 10.1016/j.apmt.2021.101176
      [128]
      J. Zhou, H.B. Chen, X.T. Zhang, K.L. Chi, Y.M. Cai, Y. Cao, and J.B. Pang, Substrate dependence on (Sb4Se6)n ribbon orientations of antimony selenide thin films: Morphology, carrier transport and photovoltaic performance, J. Alloys Compd., 862(2021), art. No. 158703. doi: 10.1016/j.jallcom.2021.158703
      [129]
      B.Y. Zheng, D. Li, C.G. Zhu, J.Y. Lan, X.X. Sun, W.H. Zheng, H.W. Liu, X.H. Zhang, X.L. Zhu, Y.X. Feng, T. Xu, L.T. Sun, G.Z. Xu, X. Wang, C. Ma, and A.L. Pan, Dual-channel type tunable field-effect transistors based on vertical bilayer WS2(1−x)Se2x/SnS2 heterostructures, InfoMat, 2(2020), No. 4, p. 752. doi: 10.1002/inf2.12071
      [130]
      Y.J. Liu, Y.D. Liu, S.C. Qin, Y.B. Xu, R. Zhang, and F.Q. Wang, Graphene–carbon nanotube hybrid films for high-performance flexible photodetectors, Nano Res., 10(2017), No. 6, p. 1880. doi: 10.1007/s12274-016-1370-9
      [131]
      S. Jang, E. Hwang, Y. Lee, S. Lee, and J.H. Cho, Multifunctional graphene optoelectronic devices capable of detecting and storing photonic signals, Nano Lett., 15(2015), No. 4, p. 2542. doi: 10.1021/acs.nanolett.5b00105
      [132]
      D. De Fazio, I. Goykhman, D. Yoon, M. Bruna, A. Eiden, S. Milana, U. Sassi, M. Barbone, D. Dumcenco, K. Marinov, A. Kis, and A.C. Ferrari, High responsivity, large-area graphene/MoS2 flexible photodetectors, ACS Nano, 10(2016), No. 9, p. 8252. doi: 10.1021/acsnano.6b05109
      [133]
      W.Z. Yu, S.J. Li, Y.P. Zhang, W.L. Ma, T. Sun, J. Yuan, K. Fu, and Q.L. Bao, Near-infrared photodetectors based on MoTe2/graphene heterostructure with high responsivity and flexibility, Small, 13(2017), No. 24, art. No. 1700268. doi: 10.1002/smll.201700268
      [134]
      D.B. Velusamy, R.H. Kim, S. Cha, J. Huh, R. Khazaeinezhad, S.H. Kassani, G. Song, S.M. Cho, S.H. Cho, I. Hwang, J. Lee, K. Oh, H. Choi, and C. Park, Flexible transition metal dichalcogenide nanosheets for band-selective photodetection, Nat. Commun., 6(2015), art. No. 8063. doi: 10.1038/ncomms9063
      [135]
      Y.R. Lim, W. Song, J.K. Han, Y.B. Lee, S.J. Kim, S. Myung, S.S. Lee, K.S. An, C.J. Choi, and J. Lim, Wafer-scale, homogeneous MoS2 layers on plastic substrates for flexible visible-light photodetectors, Adv. Mater., 28(2016), No. 25, p. 5025. doi: 10.1002/adma.201600606
      [136]
      C.Y. Lan, Z.Y. Zhou, Z.F. Zhou, C. Li, L. Shu, L.F. Shen, D.P. Li, R.T. Dong, S. Yip, and J.C. Ho, Wafer-scale synthesis of monolayer WS2 for high-performance flexible photodetectors by enhanced chemical vapor deposition, Nano Res., 11(2018), No. 6, p. 3371. doi: 10.1007/s12274-017-1941-4
      [137]
      P. Ajayan, P. Kim, and K. Banerjee, Two-dimensional van der Waals materials, Phys. Today, 69(2016), No. 9, p. 38. doi: 10.1063/PT.3.3297
      [138]
      A. Allain, J.H. Kang, K. Banerjee, and A. Kis, Electrical contacts to two-dimensional semiconductors, Nat. Mater., 14(2015), No. 12, p. 1195. doi: 10.1038/nmat4452
      [139]
      Y. Xu, C. Cheng, S.C. Du, J.Y. Yang, B. Yu, J. Luo, W.Y. Yin, E.P. Li, S.R. Dong, P.D. Ye, and X.F. Duan, Contacts between two- and three-dimensional materials: Ohmic, Schottky, and p–n heterojunctions, ACS Nano, 10(2016), No. 5, p. 4895. doi: 10.1021/acsnano.6b01842
      [140]
      A.S. Aji, P. Solís-Fernández, H.G. Ji, K. Fukuda, and H. Ago, High mobility WS2 transistors realized by multilayer graphene electrodes and application to high responsivity flexible photodetectors, Adv. Funct. Mater., 27(2017), No. 47, art. No. 1703448. doi: 10.1002/adfm.201703448
      [141]
      Y.Z. Xue, Y.P. Zhang, Y. Liu, H.T. Liu, J.C. Song, J. Sophia, J.Y. Liu, Z.Q. Xu, Q.Y. Xu, Z.Y. Wang, J.L. Zheng, Y.Q. Liu, S.J. Li, and Q.L. Bao, Scalable production of a few-layer MoS2/WS2 vertical heterojunction array and its application for photodetectors, ACS Nano, 10(2016), No. 1, p. 573. doi: 10.1021/acsnano.5b05596
      [142]
      D.B. Velusamy, M.A. Haque, M.R. Parida, F. Zhang, T. Wu, O.F. Mohammed, and H.N. Alshareef, 2D organic–inorganic hybrid thin films for flexible UV–visible photodetectors, Adv. Funct. Mater., 27(2017), No. 15, art. No. 1605554. doi: 10.1002/adfm.201605554
      [143]
      Z.Q. Zheng, T.M. Zhang, J.D. Yao, Y. Zhang, J.R. Xu, and G.W. Yang, Flexible, transparent and ultra-broadband photodetector based on large-area WSe2 film for wearable devices, Nanotechnology, 27(2016), No. 22, art. No. 225501. doi: 10.1088/0957-4484/27/22/225501
      [144]
      N.S. Lu, Z.G. Suo, and J.J. Vlassak, The effect of film thickness on the failure strain of polymer-supported metal films, Acta Mater., 58(2010), No. 5, p. 1679. doi: 10.1016/j.actamat.2009.11.010
      [145]
      S.K. Lee, H.Y. Jang, S. Jang, E. Choi, B.H. Hong, J. Lee, S. Park, and J.H. Ahn, All graphene-based thin film transistors on flexible plastic substrates, Nano Lett., 12(2012), No. 7, p. 3472. doi: 10.1021/nl300948c

    Catalog


    • /

      返回文章
      返回