Cite this article as:

Wantong Chen, Wenbo Yu, Pengcheng Zhang, Xufeng Pi, Chaosheng Ma, Guozheng Ma, and Lin Zhang, Fabrication and performance of 3D co-continuous magnesium composites reinforced with Ti2AlNx MAX phase, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp.1406-1412. https://dx.doi.org/10.1007/s12613-022-2427-2
Wantong Chen, Wenbo Yu, Pengcheng Zhang, Xufeng Pi, Chaosheng Ma, Guozheng Ma, and Lin Zhang, Fabrication and performance of 3D co-continuous magnesium composites reinforced with Ti2AlNx MAX phase, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp.1406-1412. https://dx.doi.org/10.1007/s12613-022-2427-2
引用本文 PDF XML SpringerLink

三维双连续 Ti2AlNx MAX 相增强镁基复合材料的制备及性能研究

摘要: 本文采用无压浸渗法将 Mg 浸渗到多孔Ti2AlNx (x = 0.9, 1.0) 预制体中,制备了N缺位Ti2AlN MAX相增强的三维双连续网络结构的镁基复合材料。将二维和三维表征相结合,讨论了其力学性能镁基复合材料。将二维和三维表征相结合,讨论了其力学性能与显微组织的关系。通过X射线衍射(XRD)和扫描电子显微镜分析,未发现预制体中有杂质相。三维重构结果表明,Ti2AlNx预制体为疏松多孔结构,孔洞分布均匀,内部为连续互通的网络结构,是熔融态Mg进入预制体内部的主要通道。研究发现,Ti2AlNx中的N空位和晶粒尺寸效应导致复合材料的力学性能降低,尤其是压缩屈服强度和显微硬度。Ti2AlN0.9/Mg的压缩屈服强度和显微硬度分别为353 MPa和1.12 GPa,分别比Ti2AlN/Mg低了8.55%和6.67%。复合材料中连续的骨架结构和较强的界面结合强度,使得塑性Mg基体有效阻止了Ti2AlNx中的裂纹的扩展。此外,压缩试验结果表明,Ti2AlN和Mg间没有发生界面脱粘,两者均有效地参与了变形,Ti2AlN相出现了典型的分层,Mg发生强烈的塑性变形。因此,本研究表明,可以通过控制Ti2AlN中的N缺位和层次结构来调节Ti2AlN/Mg复合材料的力学性能。

 

Fabrication and performance of 3D co-continuous magnesium composites reinforced with Ti2AlNx MAX phase

Abstract: Magnesium composites reinforced by N-deficient Ti2AlN MAX phase were first fabricated by non-pressure infiltration of Mg into three-dimensional (3D) co-continuous porous Ti2AlNx (x = 0.9, 1.0) preforms. The relationship between their mechanical properties and microstructure is discussed with the assessment of 2D and 3D characterization. X-ray diffraction (XRD) and scanning electron microscopy detected no impurities. The 3D reconstruction shows that the uniformly distributed pores in Ti2AlNx preforms are interconnected, which act as infiltration tunnels for the melt Mg. The compressive yield strength and microhardness of Ti2AlN0.9/Mg are 353 MPa and 1.12 GPa, respectively, which are 8.55% and 6.67% lower than those of Ti2AlN/Mg, respectively. The typical delamination and kink band occurred in Ti2AlNx under compressive and Vickers hardness (VH) tests. Owing to the continuous skeleton structure and strong interfacial bonding strength, the crack initiated in Ti2AlNx was blocked by the plastic Mg matrix. This suggests the possibility of regulating the mechanical performance of Ti2AlN/Mg composites by controlling the N vacancy and the hierarchical structure of Ti2AlN skeleton.

 

/

返回文章
返回