留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 7
Jul.  2022

图(7)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  1712
  • HTML全文浏览量:  556
  • PDF下载量:  165
  • 被引次数: 0
Wantong Chen, Wenbo Yu, Pengcheng Zhang, Xufeng Pi, Chaosheng Ma, Guozheng Ma, and Lin Zhang, Fabrication and performance of 3D co-continuous magnesium composites reinforced with Ti2AlNx MAX phase, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1406-1412. https://doi.org/10.1007/s12613-022-2427-2
Cite this article as:
Wantong Chen, Wenbo Yu, Pengcheng Zhang, Xufeng Pi, Chaosheng Ma, Guozheng Ma, and Lin Zhang, Fabrication and performance of 3D co-continuous magnesium composites reinforced with Ti2AlNx MAX phase, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1406-1412. https://doi.org/10.1007/s12613-022-2427-2
引用本文 PDF XML SpringerLink
研究论文

三维双连续 Ti2AlNx MAX 相增强镁基复合材料的制备及性能研究

  • 通讯作者:

    于文波    E-mail: wbyu@bjtu.edu.cn

文章亮点

  • (1) 成功制备出Ti2AlNx (x = 0.9, 1.0) 增强的三维双连续网络结构的镁基复合材料。
  • (2) 二维与三维表征相结合,通过三维真实重构揭示材料的三维信息。
  • (3) 系统研究了N缺位对Ti2AlNx/Mg复合材料微观组织和力学性能的影响规律。
  • (4) 总结并提出了通过控制Ti2AlN中的N缺位和层次结构可有效调节Ti2AlN/Mg复合材料的力学性能。
  • 本文采用无压浸渗法将 Mg 浸渗到多孔Ti2AlNx (x = 0.9, 1.0) 预制体中,制备了N缺位Ti2AlN MAX相增强的三维双连续网络结构的镁基复合材料。将二维和三维表征相结合,讨论了其力学性能镁基复合材料。将二维和三维表征相结合,讨论了其力学性能与显微组织的关系。通过X射线衍射(XRD)和扫描电子显微镜分析,未发现预制体中有杂质相。三维重构结果表明,Ti2AlNx预制体为疏松多孔结构,孔洞分布均匀,内部为连续互通的网络结构,是熔融态Mg进入预制体内部的主要通道。研究发现,Ti2AlNx中的N空位和晶粒尺寸效应导致复合材料的力学性能降低,尤其是压缩屈服强度和显微硬度。Ti2AlN0.9/Mg的压缩屈服强度和显微硬度分别为353 MPa和1.12 GPa,分别比Ti2AlN/Mg低了8.55%和6.67%。复合材料中连续的骨架结构和较强的界面结合强度,使得塑性Mg基体有效阻止了Ti2AlNx中的裂纹的扩展。此外,压缩试验结果表明,Ti2AlN和Mg间没有发生界面脱粘,两者均有效地参与了变形,Ti2AlN相出现了典型的分层,Mg发生强烈的塑性变形。因此,本研究表明,可以通过控制Ti2AlN中的N缺位和层次结构来调节Ti2AlN/Mg复合材料的力学性能。

  • Research Article

    Fabrication and performance of 3D co-continuous magnesium composites reinforced with Ti2AlNx MAX phase

    + Author Affiliations
    • Magnesium composites reinforced by N-deficient Ti2AlN MAX phase were first fabricated by non-pressure infiltration of Mg into three-dimensional (3D) co-continuous porous Ti2AlNx (x = 0.9, 1.0) preforms. The relationship between their mechanical properties and microstructure is discussed with the assessment of 2D and 3D characterization. X-ray diffraction (XRD) and scanning electron microscopy detected no impurities. The 3D reconstruction shows that the uniformly distributed pores in Ti2AlNx preforms are interconnected, which act as infiltration tunnels for the melt Mg. The compressive yield strength and microhardness of Ti2AlN0.9/Mg are 353 MPa and 1.12 GPa, respectively, which are 8.55% and 6.67% lower than those of Ti2AlN/Mg, respectively. The typical delamination and kink band occurred in Ti2AlNx under compressive and Vickers hardness (VH) tests. Owing to the continuous skeleton structure and strong interfacial bonding strength, the crack initiated in Ti2AlNx was blocked by the plastic Mg matrix. This suggests the possibility of regulating the mechanical performance of Ti2AlN/Mg composites by controlling the N vacancy and the hierarchical structure of Ti2AlN skeleton.

    • loading
    • [1]
      M.O. Pekguleryuz and A.A. Kaya, Creep resistant magnesium alloys for powertrain applications, Adv. Eng. Mater., 5(2003), No. 12, p. 866. doi: 10.1002/adem.200300403
      [2]
      V.E. Bazhenov, A.V. Koltygin, M.C. Sung, S.H. Park, Y.V. Tselovalnik, A.A. Stepashkin, A.A. Rizhsky, M.V. Belov, V.D. Belov, and K.V. Malyutin, Development of Mg–Zn–Y–Zr casting magnesium alloy with high thermal conductivity, J. Magnes. Alloys, 9(2021), No. 5, p. 1567. doi: 10.1016/j.jma.2020.11.020
      [3]
      Y. Yang, X.M. Xiong, J. Chen, X.D. Peng, D.L. Chen, and F.S. Pan, Research advances in magnesium and magnesium alloys worldwide in 2020, J. Magnes. Alloys, 9(2021), No. 3, p. 705. doi: 10.1016/j.jma.2021.04.001
      [4]
      X.P. Zhang, H.X. Wang, L.P. Bian, S.X. Zhang, Y.P. Zhuang, W.L. Cheng, and W. Liang, Microstructure evolution and mechanical properties of Mg–9Al–1Si–1SiC composites processed by multi-pass equal-channel angular pressing at various temperatures, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1966. doi: 10.1007/s12613-020-2123-z
      [5]
      K.B. Nie, X.J. Wang, K.K. Deng, X.S. Hu, and K. Wu, Magnesium matrix composite reinforced by nanoparticles—A review, J. Magnes. Alloys, 9(2021), No. 1, p. 57. doi: 10.1016/j.jma.2020.08.018
      [6]
      M.W. Barsoum, A. Murugaiah, S.R. Kalidindi, and T. Zhen, Kinking nonlinear elastic solids, nanoindentations, and geology, Phys. Rev. Lett., 92(2004), No. 25, art. No. 255508. doi: 10.1103/PhysRevLett.92.255508
      [7]
      M.W. Barsoum, The MN+1AXN phases: A new class of solids: Thermodynamically stable nanolaminates, Prog. Solid State Chem., 28(2000), No. 1-4, p. 201. doi: 10.1016/S0079-6786(00)00006-6
      [8]
      X.J. Wang, K. Wu, W.X. Huang, H.F. Zhang, M.Y. Zheng, and D.L. Peng, Study on fracture behavior of particulate reinforced magnesium matrix composite using in situ SEM, Compos. Sci. Technol., 67(2007), No. 11-12, p. 2253. doi: 10.1016/j.compscitech.2007.01.022
      [9]
      B. Inem and G. Pollard, Interface structure and fractography of a magnesium-alloy, metal-matrix composite reinforced with SiC particles, J. Mater. Sci., 28(1993), No. 16, p. 4427. doi: 10.1007/BF01154952
      [10]
      G.H. Majzoobi and K. Rahmani, Mechanical characterization of Mg–B4C nanocomposite fabricated at different strain rates, Int. J. Miner. Metall. Mater., 27(2020), No. 2, p. 252. doi: 10.1007/s12613-019-1902-x
      [11]
      H.M. Xia, L. Zhang, Y.C. Zhu, N. Li, Y.Q. Sun, J.D. Zhang, and H.Z. Ma, Mechanical properties of graphene nanoplatelets reinforced 7075 aluminum alloy composite fabricated by spark plasma sintering, Int. J. Miner. Metall. Mater., 27(2020), No. 9, p. 1295. doi: 10.1007/s12613-020-2009-0
      [12]
      J.Y. Wang, Y.C. Zhou, T. Liao, J. Zhang, and Z.J. Lin, A first-principles investigation of the phase stability of Ti2AlC with Al vacancies, Scripta Mater., 58(2008), No. 3, p. 227. doi: 10.1016/j.scriptamat.2007.09.048
      [13]
      H. Wang, H. Han, G. Yin, et al., First-principles study of vacancies in Ti3SiC2 and Ti3AlC2, Materials, 10(2017), No. 2, art. No. 103. doi: 10.3390/ma10020103
      [14]
      W.B. Yu, X.J. Wang, H.B. Zhao, et al., Microstructure, mechanical properties and fracture mechanism of Ti2AlC reinforced AZ91D composites fabricated by stir casting, J. Alloys Compd., 702(2017), p. 199. doi: 10.1016/j.jallcom.2017.01.231
      [15]
      S. Amini, J.M.C. Gallego, L. Daemen, et al., On the stability of Mg nanograins to coarsening after repeated melting, Nano Lett., 9(2009), No. 8, p. 3082. doi: 10.1021/nl9015683
      [16]
      B. Anasori, S. Amini, V. Presser, and M.W. Barsoum, Nanocrystalline Mg-matrix composites with ultrahigh damping properties, [in] Magnesium Technology 2011, Springer, Cham, 2011, p. 463.
      [17]
      W.B. Yu, X.B. Li, M. Vallet, and L. Tian, High temperature damping behavior and dynamic Young’s modulus of magnesium matrix composite reinforced by Ti2AlC MAX phase particles, Mech. Mater., 129(2019), p. 246. doi: 10.1016/j.mechmat.2018.12.001
      [18]
      W.B. Yu, D.Q. Chen, L. Tian, H.B. Zhao, and X.J. Wang, Self-lubricate and anisotropic wear behavior of AZ91D magnesium alloy reinforced with ternary Ti2AlC MAX phases, J. Mater. Sci. Technol., 35(2019), No. 3, p. 275. doi: 10.1016/j.jmst.2018.07.003
      [19]
      J. Liu, J. Binner, and R. Higginson, Dry sliding wear behaviour of co-continuous ceramic foam/aluminium alloy interpenetrating composites produced by pressureless infiltration, Wear, 276-277(2012), p. 94. doi: 10.1016/j.wear.2011.12.008
      [20]
      C. Lei, Y. Zhou, H.X. Zhai, et al., Thermal shock behavior of co-continuous TiCx–Cu cermets in air and anaerobic environment, Ceram. Int., 47(2021), No. 12, p. 16422. doi: 10.1016/j.ceramint.2020.10.246
      [21]
      C. Lei, H.X. Zhai, Z.Y. Huang, et al., Fabrication, microstructure and mechanical properties of co-continuous TiCx/Cu–Cu4Ti composites prepared by pressureless-infiltration method, Ceram. Int., 45(2019), No. 3, p. 2932. doi: 10.1016/j.ceramint.2018.09.187
      [22]
      M. Pavese, M. Valle, and C. Badini, Effect of porosity of cordierite preforms on microstructure and mechanical strength of co-continuous ceramic composites, J. Eur. Ceram. Soc., 27(2007), No. 1, p. 131. doi: 10.1016/j.jeurceramsoc.2006.05.080
      [23]
      H.J. Wang, Z.Y. Huang, J.C. Yi, et al., Microstructure and high-temperature mechanical properties of co-continuous (Ti3AlC2+Al3Ti)/2024Al composite fabricated by pressureless infiltration, Ceram. Int., 48(2022), No. 1, p. 1230. doi: 10.1016/j.ceramint.2021.09.208
      [24]
      C.L. Zhou, X.Y. Wu, T.L. Ngai, L.J. Li, S. Ngai, and Z.M. Chen, Al alloy/Ti3SiC2 composites fabricated by pressureless infiltration with melt-spun Al alloy ribbons, Ceram. Int., 44(2018), No. 6, p. 6026. doi: 10.1016/j.ceramint.2017.12.212
      [25]
      D.A.H. Hanaor, L. Hu, W.H. Kan, et al., Compressive performance and crack propagation in Al alloy/Ti2AlC composites, Mater. Sci. Eng. A, 672(2016), p. 247. doi: 10.1016/j.msea.2016.06.073
      [26]
      W.B. Yu, W.Z. Jia, F. Guo, et al., The correlation between N deficiency and the mechanical properties of the Ti2AlNy MAX phase, J. Eur. Ceram. Soc., 40(2020), No. 6, p. 2279. doi: 10.1016/j.jeurceramsoc.2020.02.014
      [27]
      J.R. Cahoon, W.H. Broughton, and A.R. Kutzak, The determination of yield strength from hardness measurements, Metall. Trans., 2(1971), No. 7, p. 1979. doi: 10.1007/BF02913433
      [28]
      S.J. Zinkle, D.H. Plantz, A.E. Bair, R.A. Dodd, and G.L. Kulcinski, Correlation of the yield strength and mlcrohardnesss of high-strength, high-conductivity copper alloys, J. Nucl. Mater., 133-134(1985), p. 685. doi: 10.1016/0022-3115(85)90236-3
      [29]
      L. Vandeperre and W.J. Clegg, The correlation between hardness and yield strength of hard materials, Mater. Sci. Forum, 492-493(2005), p. 555. doi: 10.4028/www.scientific.net/MSF.492-493.555
      [30]
      S.B. Li, W.B. Yu, H.X. Zhai, G.M. Song, W.G. Sloof, and S.V.D. Zwaag, Mechanical properties of low temperature synthesized dense and fine-grained Cr2AlC ceramics, J. Eur. Ceram. Soc., 31(2011), No. 1-2, p. 217. doi: 10.1016/j.jeurceramsoc.2010.08.014
      [31]
      B. Anasori, E.N. Caspi, and M.W. Barsoum, Fabrication and mechanical properties of pressureless melt infiltrated magnesium alloy composites reinforced with TiC and Ti2AlC particles, Mater. Sci. Eng. A, 618(2014), p. 511. doi: 10.1016/j.msea.2014.09.039
      [32]
      K. Kozak, M.M. Bućko, L. Chlubny, J. Lis, G. Antou, and T. Chotard, Influence of composition and grain size on the damage evolution in MAX phases investigated by acoustic emission, Mater. Sci. Eng. A, 743(2019), p. 114. doi: 10.1016/j.msea.2018.11.063
      [33]
      C.L. Yang, B. Zhang, D.C. Zhao, et al., Microstructure evolution of as-cast AlN/AZ91 composites and room temperature compressive properties, J. Alloys Compd., 774(2019), p. 573. doi: 10.1016/j.jallcom.2018.10.041
      [34]
      R.O. Ritchie, The conflicts between strength and toughness, Nat. Mater., 10(2011), No. 11, p. 817. doi: 10.1038/nmat3115
      [35]
      W. Yu, V. Mauchamp, T. Cabioc’h, et al., Solid solution effects in the Ti2Al(CxNy) MAX phases: Synthesis, microstructure, electronic structure and transport properties, Acta Mater., 80(2014), p. 421. doi: 10.1016/j.actamat.2014.07.064
      [36]
      W.J. Wang, V. Gauthier-Brunet, G.P. Bei, et al., Powder metallurgy processing and compressive properties of Ti3AlC2/Al composites, Mater. Sci. Eng. A, 530(2011), p. 168. doi: 10.1016/j.msea.2011.09.068

    Catalog


    • /

      返回文章
      返回