留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 1
Jan.  2023

图(10)  / 表(5)

数据统计

分享

计量
  • 文章访问数:  1088
  • HTML全文浏览量:  352
  • PDF下载量:  55
  • 被引次数: 0
Min Ao, Yucheng Ji, Pan Yi, Ni Li, Li Wang, Kui Xiao,  and Chaofang Dong, Relationship between elements migration of α-AlFeMnSi phase and micro-galvanic corrosion sensitivity of Al–Zn–Mg alloy, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 112-121. https://doi.org/10.1007/s12613-022-2428-1
Cite this article as:
Min Ao, Yucheng Ji, Pan Yi, Ni Li, Li Wang, Kui Xiao,  and Chaofang Dong, Relationship between elements migration of α-AlFeMnSi phase and micro-galvanic corrosion sensitivity of Al–Zn–Mg alloy, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 112-121. https://doi.org/10.1007/s12613-022-2428-1
引用本文 PDF XML SpringerLink
研究论文

α-AlFeMnSi相中元素扩散对Al–Zn–Mg合金微电偶腐蚀敏感性的影响

  • 通讯作者:

    董超芳    E-mail: cfdong@ustb.edu.cn

文章亮点

  • (1) α-AlFeMnSi相与Al基体之间的微电偶效应是导致Al–Zn–Mg合金局部腐蚀的主要因素。
  • (2) α-AlFeMnSi相中Fe、Mn和Si元素扩散降低了其与Al基体之间的微电偶效应。
  • (3) 热处理工艺可促进Mn元素扩散至Al基体并提升高强铝合金耐局部腐蚀性能。
  • Al–Zn–Mg合金强度高且具备良好的成型和焊接性能,已广泛应用于先进装备制造中,然而服役过程中易发生局部腐蚀失效,对构件的可靠性和安全性造成威胁。本文通过第一性原理计算和扫描开尔文探针显微镜(SKPFM)研究了α-AlFeMnSi相元素扩散对Al–Zn–Mg合金局部腐蚀行为的影响。材料建模和计算的结果表明,α-AlFeMnSi相中Fe、Mn、Si元素含量降低导致α-AlFeMnSi相/Al基体之间的平均功函数差由0.232 eV减小至0.065 eV。SKPFM实验观测到α-AlFeMnSi相中Fe和Si元素含量降低时,α-AlFeMnSi相/Al基体之间的平均Volta电位差由648.370 mV降低至432.383 mV。因此,α-AlFeMnSi相中元素的扩散降低Al–Zn–Mg合金的微电偶腐蚀敏感性。基于铝中原子扩散计算,热处理工艺(>550°C)有利于α-AlFeMnSi相中Mn元素扩散进入基体,降低α-AlFeMnSi相/Al基体微电偶腐蚀效应,提升Al–Zn–Mg合金耐局部腐蚀性能。
  • Research Article

    Relationship between elements migration of α-AlFeMnSi phase and micro-galvanic corrosion sensitivity of Al–Zn–Mg alloy

    + Author Affiliations
    • First principles calculations and scanning Kelvin probe force microscopy (SKPFM) were used to investigate the effect of elements migration of α-AlFeMnSi phase on micro-galvanic corrosion behavior of Al–Zn–Mg alloy. The simulation results showed that the average work function difference between the α-AlFeMnSi phase and Al matrix decreased from 0.232 to 0.065 eV due to the synchronous migration of elements Fe–Mn–Si. Specifically, as the elements Fe–Si migration during the extrusion process, the average Volta potential difference detected by SKPFM between the α-AlFeMnSi phase and Al matrix dropped down to 432.383 mV from 648.370 mV. Thus, the elements migration reduced the micro-galvanic corrosion sensitivity of Al–Zn–Mg alloy. To reach the calculated low micro-galvanic tendency between α-AlFeMnSi phase and Al matrix, the diffusion of Mn should be promoted during extruding process.
    • loading
    • [1]
      Y. Zou, X.D. Wu, S.B. Tang, Q.Q. Zhu, H. Song, M.X. Guo, and L.F. Cao, Investigation on microstructure and mechanical properties of Al–Zn–Mg–Cu alloys with various Zn/Mg ratios, J. Mater. Sci. Technol., 85(2021), p. 106. doi: 10.1016/j.jmst.2020.12.045
      [2]
      R.X. Li, Z. Ren, Y. Wu, Z.B. He, P.K. Liaw, J.L. Ren, and Y. Zhang, Mechanical behaviors and precipitation transformation of the lightweight high-Zn-content Al–Zn–Li–Mg–Cu alloy, Mater. Sci. Eng. A, 802(2021), art. No. 140637. doi: 10.1016/j.msea.2020.140637
      [3]
      A. Albedah, B.B. Bouiadjra, S.M.A.K. Mohammed, and F. Benyahia, Fractographic analysis of the overload effect on fatigue crack growth in 2024-T3 and 7075-T6 Al alloys, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 83. doi: 10.1007/s12613-019-1896-4
      [4]
      C.M. Li, Z.Q. Chen, S.M. Zeng, N.P. Cheng, and T.X. Chen, Intermetallic phase formation and evolution during homogenization and solution in Al–Zn–Mg–Cu alloys, Sci. China Technol. Sci., 56(2013), No. 11, p. 2827. doi: 10.1007/s11431-013-5356-5
      [5]
      S.Y. Park and W.J. Kim, Difference in the hot compressive behavior and processing maps between the as-cast and homogenized Al–Zn–Mg–Cu (7075) alloys, J. Mater. Sci. Technol., 32(2016), No. 7, p. 660. doi: 10.1016/j.jmst.2016.04.006
      [6]
      Y.P. Xiao, Q.L. Pan, W.B. Li, X.Y. Liu, and Y.B. He, Influence of retrogression and re-aging treatment on corrosion behaviour of an Al–Zn–Mg–Cu alloy, Mater. Des., 32(2011), No. 4, p. 2149. doi: 10.1016/j.matdes.2010.11.036
      [7]
      C. Xu, R.X. Zheng, S. Hanada, W.L. Xiao, and C.L. Ma, Effect of hot extrusion and subsequent T6 treatment on the microstructure evolution and tensile properties of an Al–6Si–2Cu–0.5Mg alloy, Mater. Sci. Eng. A, 710(2018), p. 102. doi: 10.1016/j.msea.2017.10.052
      [8]
      X.M. Li and M.J. Starink, Identification and analysis of intermetallic phases in overaged Zr-containing and Cr-containing Al–Zn–Mg–Cu alloys, J. Alloys Compd., 509(2011), No. 2, p. 471. doi: 10.1016/j.jallcom.2010.09.064
      [9]
      X.Y. Lv, E.J. Guo, Z.H. Li, and G.J. Wang, Research on microstructure in as-cast 7A55 aluminum alloy and its evolution during homogenization, Rare Met., 30(2011), No. 6, p. 664. doi: 10.1007/s12598-011-0446-7
      [10]
      K. Ganjehfard, R. Taghiabadi, M.T. Noghani, and M.H. Ghoncheh, Tensile properties and hot tearing susceptibility of cast Al–Cu alloys containing excess Fe and Si, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 718. doi: 10.1007/s12613-020-2039-7
      [11]
      P.K. Rout, M.M. Ghosh, and K.S. Ghosh, Effect of solution pH on electrochemical and stress corrosion cracking behaviour of a 7150 Al–Zn–Mg–Cu alloy, Mater. Sci. Eng. A, 604(2014), p. 156. doi: 10.1016/j.msea.2014.02.036
      [12]
      A. Boag, A.E. Hughes, A.M. Glenn, T.H. Muster, and D. McCulloch, Corrosion of AA2024-T3 Part I: Localised corrosion of isolated IM particles, Corros. Sci., 53(2011), No. 1, p. 17. doi: 10.1016/j.corsci.2010.09.009
      [13]
      Y.D. Zhang, S.B. Jin, P.W. Trimby, X.Z. Liao, M.Y. Murashkin, R.Z. Valiev, J.Z. Liu, J.M. Cairney, S.P. Ringer, and G. Sha, Dynamic precipitation, segregation and strengthening of an Al–Zn–Mg–Cu alloy (AA7075) processed by high-pressure torsion, Acta Mater., 162(2019), p. 19. doi: 10.1016/j.actamat.2018.09.060
      [14]
      F. Liu, Z.Y. Liu, P.X. Jia, S. Bai, P.F. Yan, and Y.C. Hu, Dynamic dissolution and texture evolution of an Al–Cu–Mg–Ag alloy during hot rolling, J. Alloys Compd., 827(2020), art. No. 154254. doi: 10.1016/j.jallcom.2020.154254
      [15]
      C.H. Fan, L. Ou, Z.Y. Hu, J.J. Yang, and X.H. Chen, re-dissolution and re-precipitation behavior of nano-precipitated phase in Al–Cu–Mg alloy subjected to rapid cold stamping, Trans. Nonferrous Met. Soc. China, 29(2019), No. 12, p. 2455. doi: 10.1016/S1003-6326(19)65153-8
      [16]
      H.L. He, Y.P. Yi, S.Q. Huang, W.F. Guo, and Y.X. Zhang, Effects of thermomechanical treatment on grain refinement, second-phase particle dissolution, and mechanical properties of 2219 Al alloy, J. Mater. Process. Technol., 278(2020), art. No. 116506. doi: 10.1016/j.jmatprotec.2019.116506
      [17]
      J.X. Xie and J.A. Liu, Theory and Technology of Metals Extrusion, 2nd ed., Metallurgical Industry Press, Beijing, 2012.
      [18]
      C. Li, K. Liu, and X.G. Chen, Improvement of elevated-temperature strength and recrystallization resistance via Mn-containing dispersoid strengthening in Al–Mg–Si 6082 alloys, J. Mater. Sci. Technol., 39(2020), p. 135. doi: 10.1016/j.jmst.2019.08.027
      [19]
      F. Alvarez-Antolin, J. Asensio-Lozano, A. Cofiño-Villar, and A. Gonzalez-Pociño, Analysis of different solution treatments in the transformation of β-AlFeSi particles into α-(FeMn)Si and their influence on different ageing treatments in Al–Mg–Si alloys, Metals, 10(2020), No. 5, art. No. 620. doi: 10.3390/met10050620
      [20]
      N.C.W. Kuijpers, F.J. Vermolen, K. Vuik, and S.V.D. Zwaag, A model of the β-AlFeSi to α-Al(FeMn)Si transformation in Al–Mg–Si alloys, Mater. Trans., 44(2003), No. 7, p. 1448. doi: 10.2320/matertrans.44.1448
      [21]
      J.K. Ren, X.Y. Fang, D.B. Chen, C. Cao, Y.W. He, and J.B. Liu, The effect of heat treatments on the microstructural evolution of twin-roll-cast Al–Fe–Si alloys, J. Mater. Eng. Perform., 30(2021), No. 6, p. 4401. doi: 10.1007/s11665-021-05732-1
      [22]
      Z.J. Zhao and G.S. Frankel, On the first breakdown in AA7075-T6, Corros. Sci., 49(2007), No. 7, p. 3064. doi: 10.1016/j.corsci.2007.02.001
      [23]
      M.C. Li, A. Seyeux, F. Wiame, P. Marcus, and J. Światowska, Insights on the Al–Cu–Fe–Mn intermetallic particles induced pitting corrosion of Al–Cu–Li alloy, Corros. Sci., 176(2020), art. No. 109040. doi: 10.1016/j.corsci.2020.109040
      [24]
      K. Uttarasak, W. Chongchitnan, K. Matsuda, T. Chairuangsri, J. Kajornchaiyakul, and C. Banjongprasert, Evolution of Fe-containing intermetallic phases and abnormal grain growth in 6063 aluminum alloy during homogenization, Results Phys., 15(2019), art. No. 102535. doi: 10.1016/j.rinp.2019.102535
      [25]
      H.B. Liu, H. Zhang, F.L. Jiang, and D.F. Fu, The intermetallic formation in the extruded AlSi20/8009 aluminum alloy during annealing treatment, Vacuum, 168(2019), art. No. 108800. doi: 10.1016/j.vacuum.2019.108800
      [26]
      C.X. Duan, J.G. Tang, W.J. Ma, L.Y. Ye, H.C. Jiang, Y.L. Deng, and X.M. Zhang, Intergranular corrosion behavior of extruded 6005A alloy profile with different microstructures, J. Mater. Sci., 55(2020), No. 24, p. 10833. doi: 10.1007/s10853-020-04692-6
      [27]
      X.X. Zhang, X.R. Zhou, J.O. Nilsson, Z.H. Dong, and C.R. Cai, Corrosion behaviour of AA6082 Al–Mg–Si alloy extrusion: Recrystallized and non-recrystallized structures, Corros. Sci., 144(2018), p. 163. doi: 10.1016/j.corsci.2018.08.047
      [28]
      Y.C. Ji, C.F. Dong, L. Chen, K. Xiao, and X.G. Li, High-throughput computing for screening the potential alloying elements of a 7xxx aluminum alloy for increasing the alloy resistance to stress corrosion cracking, Corros. Sci., 183(2021), art. No. 109304. doi: 10.1016/j.corsci.2021.109304
      [29]
      M. Ao, H.M. Liu, C.F. Dong, S. Feng, and J.C. Liu, Degradation mechanism of 6063 aluminium matrix composite reinforced with TiC and Al2O3 particles, J. Alloys Compd., 859(2021), art. No. 157838. doi: 10.1016/j.jallcom.2020.157838
      [30]
      N. Li, C.F. Dong, X. Wei, C. Man, J.Z. Yao, J.L. Cao, and X.G. Li, Scanning kelvin probe force microscopy and density functional theory studies on the surface potential of the intermetallics in AA7075-T6 alloys, J. Mater. Eng. Perform., 28(2019), No. 7, p. 4289. doi: 10.1007/s11665-019-04160-6
      [31]
      M. Ao, C.F. Dong, N. Li, L. Wang, Y.C. Ji, L. Yue, X.G. Sun, S.W. Zou, K. Xiao, and X.G. Li, Unexpected stress corrosion cracking improvement achieved by recrystallized layer in Al–Zn–Mg alloy, J. Mater. Eng. Perform., 30(2021), No. 8, p. 6258. doi: 10.1007/s11665-021-05856-4
      [32]
      Y.J. Li, A.M.F. Muggerud, A. Olsen, and T. Furu, Precipitation of partially coherent α-Al(Mn, Fe)Si dispersoids and their strengthening effect in AA 3003 alloy, Acta Mater., 60(2012), No. 3, p. 1004. doi: 10.1016/j.actamat.2011.11.003
      [33]
      L. Sweet, S.M. Zhu, S.X. Gao, J.A. Taylor, and M.A. Easton, The effect of iron content on the iron-containing intermetallic phases in a cast 6060 aluminum alloy, Metall. Mater. Trans. A, 42(2011), No. 7, p. 1737. doi: 10.1007/s11661-010-0595-6
      [34]
      G. Kresse and J. Furthmüller, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phys. Rev. B, 54(1996), No. 16, p. 11169. doi: 10.1103/PhysRevB.54.11169
      [35]
      Y. Zhang, H.X. Chen, L. Duan, J.B. Fan, L. Ni, Z. Wang, H. Li, and V. Ji, Studying the insulating characters of cubic ZrO2 slabs with nine terminations within three lower index Miller planes (001), (110) and (111), Microelectron. Eng., 213(2019), p. 77. doi: 10.1016/j.mee.2019.04.020
      [36]
      Y.C. Ji, C.F. Dong, D.C. Kong, and X.G. Li, Design materials based on simulation results of silicon induced segregation at AlSi10Mg interface fabricated by selective laser melting, J. Mater. Sci. Technol., 46(2020), p. 145. doi: 10.1016/j.jmst.2020.01.037
      [37]
      N. Li, C.F. Dong, C. Man, and J.Z. Yao, In situ electrochemical atomic force microscopy and auger electro spectroscopy study on the passive film structure of 2024-T3 aluminum alloy combined with a density functional theory calculation, Adv. Eng. Mater., 21(2019), No. 12, art. No. 1900386. doi: 10.1002/adem.201900386
      [38]
      K. Nis¸ancioğlu, Electrochemical behavior of aluminum-base intermetallics containing iron, J. Electrochem. Soc., 137(1990), No. 1, p. 69. doi: 10.1149/1.2086441
      [39]
      M. Rohwerder and F. Turcu, High-resolution Kelvin probe microscopy in corrosion science: Scanning Kelvin probe force microscopy (SKPFM) versus classical scanning Kelvin probe (SKP), Electrochim. Acta, 53(2007), No. 2, p. 290. doi: 10.1016/j.electacta.2007.03.016
      [40]
      S.N. Zhevnenko, I.S. Petrov, D. Scheiber, and V.I. Razumovskiy, Surface and segregation energies of Ag based alloys with Ni, Co and Fe: Direct experimental measurement and DFT study, Acta Mater., 205(2021), art. No. 116565. doi: 10.1016/j.actamat.2020.116565
      [41]
      D. Simonovic and M.H.F. Sluiter, Impurity diffusion activation energies in Al from first principles, Phys. Rev. B, 79(2009), No. 5, art. No. 054304.
      [42]
      M.R. Rokni, A. Zarei-Hanzaki, A.A. Roostaei, and H.R. Abedi, An investigation into the hot deformation characteristics of 7075 aluminum alloy, Mater. Des., 32(2011), No. 4, p. 2339. doi: 10.1016/j.matdes.2010.12.047
      [43]
      J.D. Robson, Microstructural evolution in aluminium alloy 7050 during processing, Mater. Sci. Eng. A, 382(2004), No. 1-2, p. 112. doi: 10.1016/j.msea.2004.05.006
      [44]
      G. Neumann and C. Tuijn. Self-diffusion and Impurity Diffusion in Pure Metals: Handbook of Experimental Data, 1st ed. Pergamon, Oxford, 2008.
      [45]
      S.I. Fujikawa, K.I. Hirano, and Y. Fukushima, Diffusion of silicon in aluminum, Metall. Trans. A, 9(1978), No. 12, p. 1811. doi: 10.1007/BF02663412
      [46]
      S. Mantl, W. Petry, K. Schroeder, and G. Vogl, Diffusion of iron in aluminum studied by Mössbauer spectroscopy, Phys. Rev. B, 27(1983), No. 9, p. 5313. doi: 10.1103/PhysRevB.27.5313
      [47]
      K. Huang and R.E. Logé, A review of dynamic recrystallization phenomena in metallic materials, Mater. Des., 111(2016), p. 548. doi: 10.1016/j.matdes.2016.09.012
      [48]
      Q.W. Ding, D. Zhang, Y. Yan, L.Z. Zhuang, and J.S. Zhang, Role of subgrain stripe on the exfoliation corrosion of Al–4.6Mg–3.1Zn (wt.%) alloy, Corros. Sci., 169(2020), art. No. 108622. doi: 10.1016/j.corsci.2020.108622
      [49]
      F.J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, 2nd ed., Pergamon, Oxford, 2004.
      [50]
      Y. Huang and F.J. Humphreys, The effect of solutes on grain boundary mobility during recrystallization and grain growth in some single-phase aluminium alloys, Mater. Chem. Phys., 132(2012), No. 1, p. 166. doi: 10.1016/j.matchemphys.2011.11.018
      [51]
      H. Tanaka and T. Minoda, Mechanical properties of 7475 aluminum alloy sheets with fine subgrain structure by warm rolling, Trans. Nonferrous Met. Soc. China, 24(2014), No. 7, p. 2187. doi: 10.1016/S1003-6326(14)63331-8
      [52]
      X.Y. Jiao, C.F. Liu, Z.P. Guo, H. Nishat, G.D. Tong, S.L. Ma, Y. Bi, Y.F. Zhang, S. Wiesner, and S.M. Xiong, On the characterization of primary iron-rich phase in a high-pressure die-cast hypoeutectic Al–Si alloy, J. Alloys Compd., 862(2021), art. No. 158580. doi: 10.1016/j.jallcom.2020.158580
      [53]
      W.C. Yang, S.X. Ji, X.R. Zhou, I. Stone, G. Scamans, G.E. Thompson, and Z.Y. Fan, Heterogeneous nucleation of α-Al grain on primary α-AlFeMnSi intermetallic investigated using 3D SEM ultramicrotomy and HRTEM, Metall. Mater. Trans. A, 45(2014), No. 9, p. 3971. doi: 10.1007/s11661-014-2346-6
      [54]
      J. Wang, B. Zhang, Y.T. Zhou, and X.L. Ma, Multiple twins of a decagonal approximant embedded in S-Al2CuMg phase resulting in pitting initiation of a 2024Al alloy, Acta Mater., 82(2015), p. 22. doi: 10.1016/j.actamat.2014.09.001
      [55]
      H. Torbati-Sarraf, T.J. Stannard, E.C.L. Plante, G.N. Sant, and N. Chawla, Direct observations of microstructure-resolved corrosion initiation in AA7075-T651 at the nanoscale using vertical scanning interferometry (VSI), Mater. Charact., 161(2020), art. No. 110166. doi: 10.1016/j.matchar.2020.110166

    Catalog


    • /

      返回文章
      返回