Cite this article as: |
Jiao Lin, Jiawei Wu, Ersha Fan, Xiaodong Zhang, Renjie Chen, Feng Wu, and Li Li, Environmental and economic assessment of structural repair technologies for spent lithium-ion battery cathode materials, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp. 942-952. https://doi.org/10.1007/s12613-022-2430-7 |
陈人杰 E-mail: chenrj@bit.edu.cn
李丽 E-mail: lily863@bit.edu.cn
Supplementary Informations12613-022-2430-7.docx |
[1] |
Y.C. Xue, X.M. Guo, M.R. Wu, J.L. Chen, M.T. Duan, J. Shi, J.H. Zhang, F. Cao, Y.J. Liu, and Q.H. Kong, Zephyranthes-like Co2NiSe4 arrays grown on 3D porous carbon frame-work as electrodes for advanced supercapacitors and sodium-ion batteries, Nano Res., 14(2021), No. 10, p. 3598. doi: 10.1007/s12274-021-3640-4
|
[2] |
E.S. Fan, L. Li, Z.P. Wang, J. Lin, Y.X. Huang, Y. Yao, R.J. Chen, and F. Wu, Sustainable recycling technology for Li-ion batteries and beyond: Challenges and future prospects, Chem. Rev., 120(2020), No. 14, p. 7020. doi: 10.1021/acs.chemrev.9b00535
|
[3] |
T. Fujita, H. Chen, K.T. Wang, C.L. He, Y.B. Wang, G. Dodbiba, and Y.Z. Wei, Reduction, reuse and recycle of spent Li-ion batteries for automobiles: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 179. doi: 10.1007/s12613-020-2127-8
|
[4] |
M.R. Wu, M.Y. Gao, S.Y. Zhang, R. Yang, Y.M. Chen, S.Q. Sun, J.F. Xie, X.M. Guo, F. Cao, and J.H. Zhang, High-performance lithium–sulfur battery based on porous N-rich g-C3N4 nanotubes via a self-template method, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1656. doi: 10.1007/s12613-021-2319-x
|
[5] |
J. Yang, W.Y. Wang, H.M. Yang, and D.H. Wang, One-pot compositional and structural regeneration of degraded LiCoO2 for directly reusing it as a high-performance lithium-ion battery cathode, Green Chem., 22(2020), No. 19, p. 6489. doi: 10.1039/D0GC02662J
|
[6] |
X.P. Fan, C.L. Tan, Y. Li, Z.Q. Chen, Y.H. Li, Y.G. Huang, Q.C. Pan, F.H. Zheng, H.Q. Wang, and Q.Y. Li, A green, efficient, closed-loop direct regeneration technology for reconstructing of the LiNi0.5Co0.2Mn0.3O2 cathode material from spent lithium-ion batteries, J. Hazard. Mater., 410(2021), art. No. 124610. doi: 10.1016/j.jhazmat.2020.124610
|
[7] |
MarketsandMarkets, Lithium-ion Battery Recycling Market by Battery Chemistry (Lithium–nickel Manganese Cobalt, Lithium-iron Phosphate, Lithium–Manganese Oxide, LTO, NCA, LCO), Industry (Automotive, Marine, Industrial, and Power), and Region - Global Forecast to 2030 [2021-11-20]. https://www.marketresearch.com/MarketsandMarkets-v3719/Lithium-ion-Battery-Recycling-Chemistry-13018717
|
[8] |
J.W. Wu, J. Lin, E.S. Fan, R.J. Chen, F. Wu, and L. Li, Sustainable regeneration of high-performance Li1−xNaxCoO2 from cathode materials in spent lithium-ion batteries, ACS Appl. Energy Mater., 4(2021), No. 3, p. 2607. doi: 10.1021/acsaem.0c03192
|
[9] |
S. Gu, L. Zhang, B.T. Fu, J.W. Ahn, and X.P. Wang, Recycling of mixed lithium-ion battery cathode materials with spent lead-acid battery electrolyte with the assistance of thermodynamic simulations, J. Clean. Prod., 266(2020), art. No. 121827. doi: 10.1016/j.jclepro.2020.121827
|
[10] |
J. Heelan, E. Gratz, Z.F. Zheng, Q. Wang, M.Y. Chen, D. Apelian, and Y. Wang, Current and prospective Li-ion battery recycling and recovery processes, JOM, 68(2016), No. 10, p. 2632. doi: 10.1007/s11837-016-1994-y
|
[11] |
X.L. Zeng, J.H. Li, and L.L. Liu, Solving spent lithium-ion battery problems in China: Opportunities and challenges, Renewable Sustainable Energy Rev., 52(2015), p. 1759. doi: 10.1016/j.rser.2015.08.014
|
[12] |
B.L. Zhang, H.W. Xie, B.H. Lu, X. Chen, P.F. Xing, J.K. Qu, Q.S. Song, and H.Y. Yin, A green electrochemical process to recover co and Li from spent LiCoO2-based batteries in molten salts, ACS Sustainable Chem. Eng., 7(2019), No. 15, p. 13391. doi: 10.1021/acssuschemeng.9b02657
|
[13] |
J. Lin, E.S. Fan, X.D. Zhang, R.L. Huang, X.X. Zhang, R.J. Chen, F. Wu, and L. Li, A lithium-ion battery recycling technology based on a controllable product morphology and excellent performance, J. Mater. Chem. A, 9(2021), No. 34, p. 18623. doi: 10.1039/D1TA06106B
|
[14] |
X.Q. Meng, H.B. Cao, J. Hao, P.G. Ning, G.J. Xu, and Z. Sun, Sustainable preparation of LiNi1/3Co1/3Mn1/3O2–V2O5 cathode materials by recycling waste materials of spent lithium-ion battery and vanadium-bearing slag, ACS Sustainable Chem. Eng., 6(2018), No. 5, p. 5797. doi: 10.1021/acssuschemeng.7b03880
|
[15] |
H.J. Bi, H.B. Zhu, L. Zu, Y. Gao, S. Gao, and Y.X. Bai, Environment-friendly technology for recovering cathode materials from spent lithium iron phosphate batteries, Waste Manag. Res., 38(2020), No. 8, p. 911. doi: 10.1177/0734242X20931933
|
[16] |
C.R. Borra, J. Mermans, B. Blanpain, Y. Pontikes, K. Binnemans, and T. Van Gerven, Selective recovery of rare earths from bauxite residue by combination of sulfation, roasting and leaching, Miner. Eng., 92(2016), p. 151. doi: 10.1016/j.mineng.2016.03.002
|
[17] |
O. Dolotko, I.Z. Hlova, Y. Mudryk, S. Gupta, and V.P. Balema, Mechanochemical recovery of Co and Li from LCO cathode of lithium-ion battery, J. Alloys Compd., 824(2020), art. No. 153876. doi: 10.1016/j.jallcom.2020.153876
|
[18] |
H. Dang, N. Li, Z.D. Chang, B.F. Wang, Y.F. Zhan, X. Wu, W.B. Liu, S. Ali, H.D. Li, J.H. Guo, W.J. Li, H.L. Zhou, and C.Y. Sun, Lithium leaching via calcium chloride roasting from simulated pyrometallurgical slag of spent lithium ion battery, Sep. Purif. Technol., 233(2020), art. No. 116025. doi: 10.1016/j.seppur.2019.116025
|
[19] |
R.C. Gao, C.H. Sun, L.J. Xu, T. Zhou, L.Q. Zhuang, and H.S. Xie, Recycling LiNi0.5Co0.2Mn0.3O2 material from spent lithium-ion batteries by oxalate co-precipitation, Vacuum, 173(2020), art. No. 109181. doi: 10.1016/j.vacuum.2020.109181
|
[20] |
L.Y. Sun, B.R. Liu, T. Wu, G.G. Wang, Q. Huang, Y.F. Su, and F. Wu, Hydrometallurgical recycling of valuable metals from spent lithium-ion batteries by reductive leaching with stannous chloride, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 991. doi: 10.1007/s12613-020-2115-z
|
[21] |
G. Harper, R. Sommerville, E. Kendrick, L. Driscoll, P. Slater, R. Stolkin, A. Walton, P. Christensen, O. Heidrich, S. Lambert, A. Abbott, K. Ryder, L. Gaines, and P. Anderson, Recycling lithium-ion batteries from electric vehicles, Nature, 575(2019), No. 7781, p. 75. doi: 10.1038/s41586-019-1682-5
|
[22] |
C. Yang, J.L. Zhang, Q.K. Jing, Y.B. Liu, Y.Q. Chen, and C.Y. Wang, Recovery and regeneration of LiFePO4 from spent lithium-ion batteries via a novel pretreatment process, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1478. doi: 10.1007/s12613-020-2137-6
|
[23] |
Y.J. Liu, Q.Y. Hu, X.H. Li, Z.X. Wang, and H.J. Guo, Recycle and synthesis of LiCoO2 from incisors bound of Li-ion batteries, Trans. Nonferrous Met. Soc. China, 16(2006), No. 4, p. 956. doi: 10.1016/S1003-6326(06)60359-2
|
[24] |
J.H. Li, S.W. Zhong, D.L. Xiong, and H. Chen, Synthesis and electrochemical performances of LiCoO2 recycled from the incisors bound of Li-ion batteries, Rare Met., 28(2009), No. 4, p. 328. doi: 10.1007/s12598-009-0064-9
|
[25] |
H.H. Nie, L. Xu, D.W. Song, J.S. Song, X.X. Shi, X.Q. Wang, L.Q. Zhang, and Z.H. Yuan, LiCoO2: Recycling from spent batteries and regeneration with solid state synthesis, Green Chem., 17(2015), No. 2, p. 1276. doi: 10.1039/C4GC01951B
|
[26] |
X. Song, T. Hu, C. Liang, H.L. Long, L. Zhou, W. Song, L. You, Z.S. Wu, and J.W. Liu, Direct regeneration of cathode materials from spent lithium iron phosphate batteries using a solid phase sintering method, RSC Adv., 7(2017), No. 8, p. 4783. doi: 10.1039/C6RA27210J
|
[27] |
Q. Liang, H.F. Yue, S.F. Wang, S.Y. Yang, K.H. Lam, and X.H. Hou, Recycling and crystal regeneration of commercial used LiFePO4 cathode materials, Electrochim. Acta, 330(2020), art. No. 135323. doi: 10.1016/j.electacta.2019.135323
|
[28] |
J. Li, Y. Wang, L.H. Wang, B. Liu, and H.M. Zhou, A facile recycling and regeneration process for spent LiFePO4 batteries, J. Mater. Sci. Mater. Electron., 30(2019), No. 15, p. 14580. doi: 10.1007/s10854-019-01830-y
|
[29] |
Q.F. Sun, X.L. Li, H.Z. Zhang, D.W. Song, X.X. Shi, J.S. Song, C.L. Li, and L.Q. Zhang, Resynthesizing LiFePO4/C materials from the recycled cathode via a green full-solid route, J. Alloys Compd., 818(2020), art. No. 153292. doi: 10.1016/j.jallcom.2019.153292
|
[30] |
Y. Shi, G. Chen, and Z. Chen, Effective regeneration of LiCoO2 from spent lithium-ion batteries: A direct approach towards high-performance active particles, Green Chem., 20(2018), No. 4, p. 851. doi: 10.1039/C7GC02831H
|
[31] |
T. Zhang, Y.Q. He, F.F. Wang, H. Li, C.L. Duan, and C.B. Wu, Surface analysis of cobalt-enriched crushed products of spent lithium-ion batteries by X-ray photoelectron spectroscopy, Sep. Purif. Technol., 138(2014), p. 21. doi: 10.1016/j.seppur.2014.09.033
|
[32] |
A.T. Appapillai, A.N. Mansour, J. Cho, and Y. Shao-Horn, Microstructure of LiCoO2 with and without “AlPO4” nanoparticle coating: Combined STEM and XPS studies, Chem. Mater., 19(2007), No. 23, p. 5748. doi: 10.1021/cm0715390
|
[33] |
Q. Li, K. Wu, M.M. Chen, Y.L. Lee, D.F. Chen, M.M. Wu, F.Q. Li, X.L. Xiao, and Z.B. Hu, Designing high-voltage and high-rate Li1−xNaxCoO2 by enlarging Li layer spacing, Electrochim. Acta, 273(2018), p. 145. doi: 10.1016/j.electacta.2018.04.043
|
[34] |
K. Dokko, S. Horikoshi, T. Itoh, M. Nishizawa, M. Mohamedi, and I. Uchida, Microvoltammetry for cathode materials at elevated temperatures: Electrochemical stability of single particles, J. Power Sources, 90(2000), No. 1, p. 109. doi: 10.1016/S0378-7753(00)00456-0
|
[35] |
J.W. Qian, L. Liu, J.X. Yang, S.Y. Li, X. Wang, H.L. Zhuang, and Y.Y. Lu, Electrochemical surface passivation of LiCoO2 particles at ultrahigh voltage and its applications in lithium-based batteries, Nat. Commun., 9(2018), art. No. 4918. doi: 10.1038/s41467-018-07296-6
|