Cite this article as:

Jiao Lin, Jiawei Wu, Ersha Fan, Xiaodong Zhang, Renjie Chen, Feng Wu, and Li Li, Environmental and economic assessment of structural repair technologies for spent lithium-ion battery cathode materials, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp.942-952. https://dx.doi.org/10.1007/s12613-022-2430-7
Jiao Lin, Jiawei Wu, Ersha Fan, Xiaodong Zhang, Renjie Chen, Feng Wu, and Li Li, Environmental and economic assessment of structural repair technologies for spent lithium-ion battery cathode materials, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp.942-952. https://dx.doi.org/10.1007/s12613-022-2430-7
引用本文 PDF XML SpringerLink

废旧锂离子电池正极材料结构修复技术的环境和经济评估

摘要: 现有再生回收技术存在对健康状态较差的锂离子电池正极材料再生效果差、产品附加值低等问题。在这项工作中,提出了一种针对性的补锂修复技术,以提高再生钴酸锂正极材料的放电容量和循环稳定性。结果表明,不同锂添加量对再生钴酸锂材料有明显影响,再生钴酸锂正极的锂/钴摩尔比均大于0.9,完全消除了失效材料中由于LixCoO2分解而形成的Co3O4杂相。与商业LiCoO2材料相比,修复材料在1 C(1 C = 150 mA·g−1)和10 C下都表现出更好的循环稳定性、更低的电化学阻抗和更快的Li+扩散速率。Li1.05CoO2正极具有更高的Li补充效率和循环稳定性。与火法和湿法回收工艺相比,固相烧结修复工艺的能耗和温室气体排放明显减少。

 

Environmental and economic assessment of structural repair technologies for spent lithium-ion battery cathode materials

Abstract: The existing recycling and regeneration technologies have problems, such as poor regeneration effect and low added value of products for lithium (Li)-ion battery cathode materials with a low state of health. In this work, a targeted Li replenishment repair technology is proposed to improve the discharge-specific capacity and cycling stability of the repaired LiCoO2 cathode materials. Compared with the spent cathode material with >50% Li deficiency, the Li/Co molar ratio of the regenerated LiCoO2 cathode is >0.9, which completely removes the Co3O4 impurity phase formed by the decomposition of LixCoO2 in the failed cathode material after repair. The repaired LiCoO2 cathode materials exhibit better cycling stability, lower electrochemical impedance, and faster Li+ diffusion than the commercial materials at both 1 and 10 C. Meanwhile, Li1.05CoO2 cathodes have higher Li replenishment efficiency and cycling stability. The energy consumption and greenhouse gas emissions of LiCoO2 cathodes produced by this repair method are significantly reduced compared to those using pyrometallurgical and hydrometallurgical recycling processes.

 

/

返回文章
返回