留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 4
Apr.  2022

图(15)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  2338
  • HTML全文浏览量:  507
  • PDF下载量:  111
  • 被引次数: 0
Yusha Li, Changchun Ge, Yanhong Liu, Guangbin Li, Xiaoxu Dong, Zongxing Gu,  and Yingchun Zhang, Influencing factors and mechanism of iodine-induced stress corrosion cracking of zirconium alloy cladding: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 586-598. https://doi.org/10.1007/s12613-022-2431-6
Cite this article as:
Yusha Li, Changchun Ge, Yanhong Liu, Guangbin Li, Xiaoxu Dong, Zongxing Gu,  and Yingchun Zhang, Influencing factors and mechanism of iodine-induced stress corrosion cracking of zirconium alloy cladding: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 586-598. https://doi.org/10.1007/s12613-022-2431-6
引用本文 PDF XML SpringerLink
特约综述

锆合金包层碘致应力腐蚀开裂的影响因素及机理:综述

  • 通讯作者:

    葛昌纯    E-mail: ccge@mater.ustb.edu.cn

    张迎春    E-mail: zhang@ustb.edu.cn

文章亮点

  • (1) 系统地总结了锆合金发生碘致应力腐蚀开裂的机理。
  • (2) 系统地总结了锆合金发生碘致应力腐蚀开裂的影响因素。
  • (3) 提出了改善锆合金碘致应力腐蚀开裂的途径。
  • 因碘致应力腐蚀开裂(I-SCC)导致的锆合金包壳失效会增加裂变产物泄漏的风险。已在大量已发表的文献中对I-SCC的进展进行了全面调查。为了可以更加全面的了解I-SCC,本综述重点总结了锆合金发生I-SCC的机制和影响因素。结果表明,由于碘与锆的反应,锆合金表面形成了微坑,然后微坑逐渐聚集形成坑簇。裂纹很容易在凹坑簇中产生并沿晶界扩展。达到特定条件后,裂纹将转变为穿晶方向扩展。随着裂纹的发展,最终形成韧性断裂。我们还总结了可能影响 I-SCC的各种因素,包括碘浓度、温度、微观结构和合金元素等元素。尽管如此,锆合金的抵抗I-SCC性能的改善仍需进一步探索;并且可以更多地关注材料性能,如合金元素、微观结构和表面处理,以提高锆合金的抗I-SCC性能。
  • Invited Review

    Influencing factors and mechanism of iodine-induced stress corrosion cracking of zirconium alloy cladding: A review

    + Author Affiliations
    • Failure of the zirconium alloy claddings due to iodine-induced stress corrosion cracking (I-SCC) will increase the risk of fission product leakage. The progress of I-SCC has been comprehensively investigated in a massive amount of published literature. For a comprehensive understanding of I-SCC, this review focuses on summarizing the mechanisms and influencing factors of I-SCC. Results show that micropits are formed on the surface of zirconium alloys due to the reaction between iodine and zirconium, and then small pits gradually gather to form pit clusters. Cracks are easily generated in pit clusters and propagate along the grain boundary. After reaching a particular condition, the crack will transform into transgranular direction propagation. As the crack develops, it finally becomes a ductile fracture. We also summarize various factors that may affect I-SCC. The specific cracking conditions are linked to elements, such as iodine concentration, temperature, microstructure, and alloying elements. Nonetheless, the improvement of the I-SCC resistance of zirconium alloys needs to be further explored. More attention can be paid to material properties, such as alloying elements, microstructure, and surface treatment, to improve the I-SCC resistance of zirconium alloys.
    • loading
    • [1]
      M.M. Abu-Khader, Recent advances in nuclear power: A review, Prog. Nucl. Energy, 51(2009), No. 2, p. 225. doi: 10.1016/j.pnucene.2008.05.001
      [2]
      C.T. Whitman, The case for nuclear power, Business Week, 2007, No. 4050, p. 102.
      [3]
      J.P. Howe, The beginning of nuclear materials: Studies of corrosion and cladding, J. Nucl. Mater., 100(1981), No. 1-3, p. 36. doi: 10.1016/0022-3115(81)90517-1
      [4]
      R.L.S. Martin, Environmental Emissions from Energy Technology Systems: The Total Fuel Cycle, US Department of Energy, Washington, 1989 [2021-08-10]. https://doi.org/10.2172/860715
      [5]
      E.I. Grishanin, The role of chemical reactions in the Chernobyl accident, Phys. Atom. Nuclei, 73(2010), No. 14, p. 2296. doi: 10.1134/S1063778810140073
      [6]
      F. Tanabe, Analyses of core melt and re-melt in the Fukushima Daiichi nuclear reactors, J. Nucl. Sci. Technol., 49(2012), No. 1, p. 18. doi: 10.1080/18811248.2011.636537
      [7]
      G. Steinhauser, A. Brandl, and T.E. Johnson, Comparison of the Chernobyl and Fukushima nuclear accidents: A review of the environmental impacts, Sci. Total. Environ., 470-471(2014), p. 800. doi: 10.1016/j.scitotenv.2013.10.029
      [8]
      S. Uchida, H. Karasawa, C. Kino, M. Pellegrini, M. Naitoh, and M. Ohsaka, An approach toward evaluation of long-term fission product distributions in the Fukushima Daiichi nuclear power plant after the severe accident, Nucl. Eng. Des., 380(2021), art. No. 111256. doi: 10.1016/j.nucengdes.2021.111256
      [9]
      Z. Karoutas, J. Brown, A. Atwood, L. Hallstadius, E. Lahoda, S. Ray, and J. Bradfute, The maturing of nuclear fuel: Past to accident tolerant fuel, Prog. Nucl. Energy, 102(2018), p. 68. doi: 10.1016/j.pnucene.2017.07.016
      [10]
      R.B. Adamson, C.E. Coleman, and M. Griffiths, Irradiation creep and growth of zirconium alloys: A critical review, J. Nucl. Mater., 521(2019), p. 167. doi: 10.1016/j.jnucmat.2019.04.021
      [11]
      H.G. Rickover, L.D. Geiger, and B. Lustman, History of The Development of Zirconium Alloys for Use in Nuclear Reactors, US Energy Research and Development Administration, Washington, 1975 [2021-08-01]. https://doi.org/10.2172/4240391
      [12]
      H. Pomerance, Thermal neutron capture cross sections, Phys. Rev., 88(1952), No. 2, p. 412. doi: 10.1103/PhysRev.88.412
      [13]
      L. Xu, Y. Xiao, A. van Sandwijk, Q. Xu, and Y. Yang, Production of nuclear grade zirconium: A review, J. Nucl. Mater., 466(2015), p. 21. doi: 10.1016/j.jnucmat.2015.07.010
      [14]
      G. Pan, C.J. Long, A.M. Garde, A.R. Atwood, J.P. Foster, R.J. Comstock, L. Hallstadius, D.L. Nuhfer, and R. Baranwal, Advanced material for PWR application: AXIOMTM cladding, [in] Proceedings of International Conference on Light Water Reactor Fuel Performance, Orlando, Florida, 2010.
      [15]
      K.A. Terrani, S.J. Zinkle, and L.L. Snead, Advanced oxidation-resistant iron-based alloys for LWR fuel cladding, J. Nucl. Mater., 448(2014), No. 1-3, p. 420. doi: 10.1016/j.jnucmat.2013.06.041
      [16]
      S. Kass. The development of the zircaloys, [in] W.K. Anderson, ed., Corrosion of Zirconium Alloys, the American Society for Testing and Materials, Philadelphia, 1964, p. 3.
      [17]
      C.L. Whitmarsh, Review of Zircaloy-2 and Zircaloy-4 Properties Relevant to N.S. Savannah Reactor Design, Oak Ridge National Laboratory, Oak Ridge, 1962 [2021-08-20]. https://doi.org/10.2172/4827123
      [18]
      A.M. Garde, S.R. Pati, M.A. Krammen, G.P. Smith, and R.K. Endter, Corrosion behavior of Zircaloy-4 cladding with varying tin content in high-temperature pressurized water reactors, [in] Zirconium in the Nuclear Industry: Tenth International Symposium, Baltimore, MD, 1994.
      [19]
      G.P. Sabol, G.R. Kilp, M.G. Balfour, and E. Roberts, Development of a cladding alloy for high burnup, [in] Zirconium in the Nuclear Industry: Eighth International Symposium, San Diego, 1988.
      [20]
      G.P. Sabol, R.J. Comstock, R.A. Weiner, P. Larouere, and R.N. Stanutz, In-reactor corrosion performance of ZIRLOTM and Zircaloy-4, [in] Zirconium in the Nuclear Industry: Tenth International Symposium, Baltimore, MD, 1994.
      [21]
      S. Doriot, D. Gilbon, J.L. Béchade, M.H. Mathon, L. Legras, and J.P. Mardon, Microstructural stability of M5™ alloy irradiated up to high neutron fluences, [in] Zirconium in the Nuclear Industry: Fourteenth International Symposium, Stockholm, 2005.
      [22]
      J.P. Mardon, G.L. Garner, and P.B. Hoffmann, M5® a breakthrough in Zr alloy, [in] Proceedings of International Conference on Light Water Reactor Fuel Performance, Orlando, Florida, 2010.
      [23]
      V. Novikov, V. Markelov, A. Gusev, A. Malgin, A. Kabanov, and Y. Pimenov, Some results on the properties investigations of zirconium alloys for VVER-1000 fuel cladding, [in] 9th International Conference on WWER Fuel Performance, Modelling and Experimental Support, Helena Resort, 2011.
      [24]
      A.V. Nikulina, Zirconium alloys in nuclear power engineering, Met. Sci. Heat Treat., 46(2004), No. 11-12, p. 458. doi: 10.1007/s11041-005-0002-x
      [25]
      A.V. Nikulina, V.A. Markelov, M.M. Peregud, Y.K. Bibilashvili, V.A. Kotrekhov, A.F. Lositsky, N.V. Kuzmenko, Y.P. Shevnin, V.K. Shamardin, G.P. Kobylyansky, and A.E. Novoselov, Zirconium alloy E635 as a material for fuel rod cladding and other components of VVER and RBMK cores, [in] Zirconium in the Nuclear Industry: Eleventh International Symposium, Garmisch-Partenkirchen, 1996.
      [26]
      A.M. Garde, R.J. Comstock, G. Pan, R. Baranwal, L. Hallstadius, T. Cook, and F. Carrera, Advanced zirconium alloy for PWR application, [in] Zirconium in the Nuclear Industry: 16th International Symposium, Chengdu, 2010.
      [27]
      F. Garzarolli, P. Rudling, and C. Patterson, Performance Evaluation of New Advanced Zr Alloys for PWRs/VVER, Advanced Nuclear Technology International, Mölnlycke, 2011.
      [28]
      W.J. Zhao, B.X. Zhou, Z. Miao, Q. Peng, Y.R. Jiang, H.M. Jiang, H. Pang, C. Li, Y. Gou, X.W. Yu, S.J. Xue, H.T. Chen, Y.Z. Liu, J.H. Peng, and S.Q. Zhao, Development of advanced zirconium alloys used in Chinese nuclear industry, [in] The 13th International Conference on Nuclear Engineering, Beijing, 2005.
      [29]
      B. Cox, Pellet-clad interaction (PCI) failures of zirconium alloy fuel cladding—A review, J. Nucl. Mater., 172(1990), No. 3, p. 249. doi: 10.1016/0022-3115(90)90282-R
      [30]
      J.S. Cheon, Y.H. Koo, B.H. Lee, J.Y. Oh, and D.S. Sohn, Modelling of a pellet–clad mechanical interaction in LWR fuel by considering gaseous swelling, [in] Proceedings of the Seminar on Pelletclad Interaction in Water Reactor Fuels, Aix-en-Provence, 2004, p. 191.
      [31]
      B.J. Lewis, W.T. Thompson, M.R. Kleczek, K. Shaheen, M. Juhas, and F.C. Iglesias, Modelling of iodine-induced stress corrosion cracking in CANDU fuel, J. Nucl. Mater., 408(2011), No. 3, p. 209. doi: 10.1016/j.jnucmat.2010.10.063
      [32]
      K.A. Terrani, Accident tolerant fuel cladding development: Promise, status, and challenges, J. Nucl. Mater., 501(2018), p. 13. doi: 10.1016/j.jnucmat.2017.12.043
      [33]
      J.J. Serna, P. Tolonen, S. Abeta, S. Watanabe, Y. Kosaka, T. Sendo, and P. Gonzalez, Experimental observations on fuel pellet performance at high burnup, J. Nucl. Sci. Technol., 43(2006), No. 9, p. 1045. doi: 10.1080/18811248.2006.9711194
      [34]
      M.H.A. Piro, D. Sunderland, S. Livingstone, J. Sercombe, R.W. Revie, A. Quastel, K.A. Terrani, and C. Judge, Pellet–clad interaction behavior in zirconium alloy fuel cladding, Compr. Nucl. Mater., 2(2020), p. 248.
      [35]
      K. Maeda, Ceramic fuel–cladding interaction, Compr. Nucl. Mater., 3(2012), p. 443.
      [36]
      M. Peehs, F. Garzarolli, R. Hahn, and E. Steinberg, Diskussion möglicher mechanismen von PCI-defekten, J. Nucl. Mater., 87(1979), No. 2-3, p. 274. doi: 10.1016/0022-3115(79)90564-6
      [37]
      M. Gaertner and J.C. LaVake, Power ramp testing and non-destructive post-irradiation examinations of high burnup PWR fuel rods, [in] Proceedings of the Specialists’ Meeting on Pellet Cladding Interaction in Water Reactor Fuel, Seattle, 1983.
      [38]
      B. van der Schaaf, Fracture of Zircaloy-2 in an environment containing iodine, [in] Symposium on Zirconium in Nuclear Application, Portland, 1973.
      [39]
      P. Bouffioux, J.V. Vliet, P. Deramaix, and M. Lippens, Potential causes of failures associated with power changes in LWR's, J. Nucl. Mater., 87(1979), No. 2-3, p. 251. doi: 10.1016/0022-3115(79)90561-0
      [40]
      K. Konashi, T. Yato, and H. Kaneko, Radiation effect on partial pressure of fission product iodine, J. Nucl. Mater., 116(1983), No. 1, p. 86. doi: 10.1016/0022-3115(83)90296-9
      [41]
      J.S. Armijo, L.F. Coffin, and H.S. Rosenbaum, Development of zirconium-barrier fuel cladding, [in] Zirconium in the Nuclear Industry: Tenth International Symposium, Baltimore, MD, 1994.
      [42]
      A. Garlick and P.D. Wolfenden, Fracture of zirconium alloys in iodine vapour, J. Nucl. Mater., 41(1971), No. 3, p. 274. doi: 10.1016/0022-3115(71)90165-6
      [43]
      P. Hofmann and J. Spino, Determination of the critical iodine concentration for stress corrosion cracking failure of Zircaloy-4 tubing between 500 and 900°C, J. Nucl. Mater., 107(1982), No. 2-3, p. 297. doi: 10.1016/0022-3115(82)90429-9
      [44]
      O. Götzmann, Thermochemical evaluation of PCI failures in LWR fuel pins, J. Nucl. Mater., 107(1982), No. 2-3, p. 185. doi: 10.1016/0022-3115(82)90420-2
      [45]
      D. Cubicciotti, R.L. Jones, and B.C. Syrett, Chemical aspects of iodine-induced stress corrosion cracking of Zircaloys, [in] Zirconium in the Nuclear Industry: Fifth International Symposium, Boston, 1982.
      [46]
      C. Gillen, A. Garner, A. Plowman, C.P. Race, T. Lowe, C. Jones, K.L. Moore, and P. Frankel, Advanced 3D characterisation of iodine induced stress corrosion cracks in zirconium alloys, Mater. Charact., 141(2018), p. 348. doi: 10.1016/j.matchar.2018.04.034
      [47]
      B. Cox and R. Haddad, Recent studies of crack initiation during stress corrosion cracking of zirconium alloys, [in] Zirconium in the Nuclear Industry: Seventh International Symposium, Strasbourg, 1987.
      [48]
      S.Y. Park, J.H. Kim, M.H. Lee, and Y.H. Jeong, Stress-corrosion crack initiation and propagation behavior of Zircaloy-4 cladding under an iodine environment, J. Nucl. Mater., 372(2008), No. 2-3, p. 293. doi: 10.1016/j.jnucmat.2007.03.258
      [49]
      P. Jacques, F. Lefebvre, and C. Lemaignan, Deformation–corrosion interactions for Zr alloys during I-SCC crack initiation: Part I: Chemical contributions, J. Nucl. Mater., 264(1999), No. 3, p. 239. doi: 10.1016/S0022-3115(98)00501-7
      [50]
      T. Jezequel, Q. Auzoux, D.L. Boulch, M. Bono, E. Andrieu, C. Blanc, V. Chabretou, N. Mozzani, and M. Rautenberg, Stress corrosion crack initiation of Zircaloy-4 cladding tubes in an iodine vapor environment during creep, relaxation, and constant strain rate tests, J. Nucl. Mater., 499(2018), p. 641. doi: 10.1016/j.jnucmat.2017.07.014
      [51]
      S.Y. Park, J.H. Kim, M.H. Lee, and Y.H. Jeong, Effects of the microstructure and alloying elements on the iodine-induced stress-corrosion cracking behavior of nuclear fuel claddings, J. Nucl. Mater., 376(2008), No. 1, p. 98. doi: 10.1016/j.jnucmat.2008.01.024
      [52]
      S.Y. Park, J.H. Kim, B.K. Choi, and Y.H. Jeong, Crack initiation and propagation behavior of zirconium cladding under an environment of iodine-induced stress corrosion, Met. Mater. Int., 13(2007), No. 2, p. 155. doi: 10.1007/BF03027567
      [53]
      S.B. Farina, G.S. Duffó, and J.R. Galvele, Stress corrosion cracking of zirconium and Zircaloy-4 in iodine-alcoholic solutions, Corrosion, 59(2003), No. 5, p. 436. doi: 10.5006/1.3277575
      [54]
      S.Y. Park, B.K. Choi, J.Y. Park, and Y.H. Jeong, Effect of hydride on the ISCC crack initiation and propagation in the high burnup-simulated nuclear fuel cladding, [in] Proceedings of the Water Reactor Fuel Performance Meeting, Paris, 2009.
      [55]
      G.S. Duffó and S.B. Farina, Diffusional control in the intergranular corrosion of some hcp metals in iodine alcoholic solutions, Corros. Sci., 47(2005), No. 6, p. 1459. doi: 10.1016/j.corsci.2004.07.039
      [56]
      R.B. Adamson, Effect of texture on stress corrosion cracking of irradiated zircaloy in iodine, J. Nucl. Mater., 92(1980), No. 2-3, p. 363. doi: 10.1016/0022-3115(80)90126-9
      [57]
      W.S. Ryu, J.Y. Lee, Y.H. Kang, and H.C. Suk, Strain rate dependence of iodine-induced stress corrosion cracking of Zircaloy-4 under internal pressurization tests, J. Mater. Sci., 25(1990), No. 7, p. 3167. doi: 10.1007/BF00587669
      [58]
      M.R. Louthan, R.P. McNitt, and R.D. Sisson, Environmental degradation of engineering materials in hydrogen, [in] Proceedings of Second International Conference on Environmental Degradation of Engineering Materials, Blacksburg, 1981.
      [59]
      M. Fregonese, C. Olagnon, N. Godin, A. Hamel, and T. Douillard, Strain-hardening influence on iodine induced stress corrosion cracking of Zircaloy-4, J. Nucl. Mater., 373(2008), No. 1-3, p. 59. doi: 10.1016/j.jnucmat.2007.04.052
      [60]
      B. Meng, M.W. Fu, C.M. Fu, and K.S. Chen, Ductile fracture and deformation behavior in progressive microforming, Mater. Des., 83(2015), p. 14. doi: 10.1016/j.matdes.2015.05.088
      [61]
      B. Cox and J.C. Wood, The mechanism of SCC of zirconium alloys in halogens, [in] Proc. Int. Conf. on Mechanisms of Environment Sensitive Cracking of Materials, Guildford, 1977, p. 520.
      [62]
      L. Fournier, A. Serres, Q. Auzoux, D. Leboulch, and G.S. Was, Proton irradiation effect on microstructure, strain localization and iodine-induced stress corrosion cracking in Zircaloy-4, J. Nucl. Mater., 384(2009), No. 1, p. 38. doi: 10.1016/j.jnucmat.2008.10.001
      [63]
      A. Serres, L. Fournier, M. Frégonèse, Q. Auzoux, and D. Leboulch, The effect of iodine content and specimen orientation on stress corrosion crack growth rate in Zircaloy-4, Corros. Sci., 52(2010), No. 6, p. 2001. doi: 10.1016/j.corsci.2010.02.008
      [64]
      C. Gillen, A. Garner, C. Anghel, and P. Frankel, Investigating iodine-induced stress corrosion cracking of zirconium alloys using quantitative fractography, J. Nucl. Mater., 539(2020), art. No. 152272. doi: 10.1016/j.jnucmat.2020.152272
      [65]
      M.L. Rossi and C.D. Taylor, First-principles insights into the nature of zirconium-iodine interactions and the initiation of iodine-induced stress-corrosion cracking, J. Nucl. Mater., 458(2015), p. 1. doi: 10.1016/j.jnucmat.2014.11.114
      [66]
      J.C. Wood, Factors affecting stress corrosion cracking of Zircaloy in iodine vapour, J. Nucl. Mater., 45(1972), No. 2, p. 105. doi: 10.1016/0022-3115(72)90178-X
      [67]
      K. Une, Threshold values characterizing iodine-induced SCC of Zircaloys, Res Mechanica, 12(1984), No. 3, p. 161.
      [68]
      S.B. Farina and G.S. Duffó, Intergranular to transgranular transition in the stress corrosion cracking of Zircaloy-4, Corros. Sci., 46(2004), No. 9, p. 2255. doi: 10.1016/j.corsci.2004.01.004
      [69]
      C. Gillen, A. Garner, C. Jones, K.L. Moore, P. Tejland, and P. Frankel, High resolution crystallographic and chemical characterisation of iodine induced stress corrosion crack tips formed in irradiated and non-irradiated zirconium alloys, J. Nucl. Mater., 519(2019), p. 166. doi: 10.1016/j.jnucmat.2019.03.027
      [70]
      E. Munch, L. Duisabeau, M. Fregonese, and L. Fournier, Acoustic emission detection of environmentally assisted cracking in Zircaloy-4 alloy, [in] European Corrosion Conference: Long Term Prediction and Modelling of Corrosion, Nice, 2004.
      [71]
      C.M. Giordano, S.B. Farina, G.S. Duffó, and J.R. Galvele, Steric hindrance as a rate controlling step in stress corrosion cracking, Corros. Sci., 49(2007), No. 6, p. 2745. doi: 10.1016/j.corsci.2006.12.020
      [72]
      C.R.F. Azevedo, Selection of fuel cladding material for nuclear fission reactors, Eng. Fail. Anal., 18(2011), No. 8, p. 1943. doi: 10.1016/j.engfailanal.2011.06.010
      [73]
      J.C. Wood and J.R. Kelm, Effects of irradiation on the iodine-induced stress corrosion cracking of Candu Zircaloy fuel cladding, Res. Mechanica, 8(1983), No. 3, p. 127.
      [74]
      C. Anghel, A.M.A. Holston, G. Lysell, S. Karlsson, R. Jakobsson, J. Flygare, S.T. Mahmood, D.L. Boulch, and A. Ioan, Experimental and finite element modeling parametric study for iodine-induced stress corrosion cracking of irradiated cladding, [in] Proceedings of International Conference on Light Water Reactor Fuel Performance, Orlando, Florida, 2010, p. 218.
      [75]
      D.L. Boulch, L. Fournier, and C. Sainte-Catherine, Testing and modelling iodine-induced stress corrosion cracking in stress-relieved Zircaloy-4, [in] Proceedings of the Seminar on Pellet–clad Interaction in Water Reactor Fuels, Aix-en-Provence, 2004.
      [76]
      A.V.G. Sanchez, S.B. Farina, and G.S. Duffó, Effect of temperature on the stress corrosion cracking of Zircaloy-4 in iodine alcoholic solutions, Corros. Sci., 49(2007), No. 7, p. 3112. doi: 10.1016/j.corsci.2007.01.005
      [77]
      D.B. Knorr, R.M. Pelloux, and L.F.P. Van Swam, Effects of material condition on the iodine SCC susceptibility of Zircaloy-2 cladding, J. Nucl. Mater., 110(1982), No. 2-3, p. 230. doi: 10.1016/0022-3115(82)90151-9
      [78]
      M. Nagai, S. Shimada, S. Nishimura, K. Amano, and G. Yagawa, Elucidating the iodine stress corrosion cracking (SCC) process for zircaloy tubing, [in] Proceedings of the Specialists’ Meeting on Pellet Cladding Interaction in Water Reactor Fuel, Seattle, 1983.
      [79]
      K. Arioka, T. Yamada, T. Terachi, and G. Chiba, Influence of carbide precipitation and rolling direction on intergranular stress corrosion cracking of austenitic stainless steels in hydrogenated high-temperature water, Corrosion, 62(2006), No. 7, p. 568. doi: 10.5006/1.3280670
      [80]
      P. Hofmann and J. Spino, Chemical aspects of iodine-induced stress corrosion cracking failure of Zircaloy-4 tubing above 50℃, J. Nucl. Mater., 114(1983), No. 1, p. 50. doi: 10.1016/0022-3115(83)90072-7
      [81]
      R.L. Jones, D. Cubicciotti, and B.C. Syrett, Effects of test temperature, alloy composition, and heat treatment on iodine-induced stress corrosion cracking of unirradiated Zircaloy tubing, J. Nucl. Mater., 91(1980), No. 2-3, p. 277. doi: 10.1016/0022-3115(80)90227-5
      [82]
      Y.S. Li, Y.H. Liu, G.B. Li, X.X. Dong, Y. Wang, Z.X. Gu, and Y.C. Zhang, Iodine-induced stress corrosion cracking behavior of alloy ZIRLO with Zr coatings by electrodepositing with different pulse current densities, Corros. Sci., 193(2021), art. No. 109890. doi: 10.1016/j.corsci.2021.109890
      [83]
      R.F. Mattas, F.L. Yaggee, and L.A. Neimark, Effect of zirconium oxide on the stress-corrosion susceptibility of irradiated Zircaloy cladding, [in] Zirconium in the Nuclear Industry: Fifth International Symposium, Boston, 1982.
      [84]
      P.S. Sidky, Iodine stress corrosion cracking of Zircaloy reactor cladding: Iodine chemistry (a review), J. Nucl. Mater., 256(1998), No. 1, p. 1. doi: 10.1016/S0022-3115(98)00044-0
      [85]
      B. Gwinner, H. Badji-Bouyssou, M. Benoit, N. Brijiou-Mokrani, P. Fauvet, N. Gruet, P. Laghoutaris, F. Miserque, R. Robin, and M. Tabarant, Corrosion of zirconium in the context of the spent nuclear fuel reprocessing plant, [in] 21st International Conference and Exhibition Nuclear Fuel Cycle for a Low-carbon Future, Paris, 2015.

    Catalog


    • /

      返回文章
      返回