Cite this article as: |
Yusha Li, Changchun Ge, Yanhong Liu, Guangbin Li, Xiaoxu Dong, Zongxing Gu, and Yingchun Zhang, Influencing factors and mechanism of iodine-induced stress corrosion cracking of zirconium alloy cladding: A review, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 586-598. https://doi.org/10.1007/s12613-022-2431-6 |
葛昌纯 E-mail: ccge@mater.ustb.edu.cn
张迎春 E-mail: zhang@ustb.edu.cn
[1] |
M.M. Abu-Khader, Recent advances in nuclear power: A review, Prog. Nucl. Energy, 51(2009), No. 2, p. 225. doi: 10.1016/j.pnucene.2008.05.001
|
[2] |
C.T. Whitman, The case for nuclear power, Business Week, 2007, No. 4050, p. 102.
|
[3] |
J.P. Howe, The beginning of nuclear materials: Studies of corrosion and cladding, J. Nucl. Mater., 100(1981), No. 1-3, p. 36. doi: 10.1016/0022-3115(81)90517-1
|
[4] |
R.L.S. Martin, Environmental Emissions from Energy Technology Systems: The Total Fuel Cycle, US Department of Energy, Washington, 1989 [2021-08-10]. https://doi.org/10.2172/860715
|
[5] |
E.I. Grishanin, The role of chemical reactions in the Chernobyl accident, Phys. Atom. Nuclei, 73(2010), No. 14, p. 2296. doi: 10.1134/S1063778810140073
|
[6] |
F. Tanabe, Analyses of core melt and re-melt in the Fukushima Daiichi nuclear reactors, J. Nucl. Sci. Technol., 49(2012), No. 1, p. 18. doi: 10.1080/18811248.2011.636537
|
[7] |
G. Steinhauser, A. Brandl, and T.E. Johnson, Comparison of the Chernobyl and Fukushima nuclear accidents: A review of the environmental impacts, Sci. Total. Environ., 470-471(2014), p. 800. doi: 10.1016/j.scitotenv.2013.10.029
|
[8] |
S. Uchida, H. Karasawa, C. Kino, M. Pellegrini, M. Naitoh, and M. Ohsaka, An approach toward evaluation of long-term fission product distributions in the Fukushima Daiichi nuclear power plant after the severe accident, Nucl. Eng. Des., 380(2021), art. No. 111256. doi: 10.1016/j.nucengdes.2021.111256
|
[9] |
Z. Karoutas, J. Brown, A. Atwood, L. Hallstadius, E. Lahoda, S. Ray, and J. Bradfute, The maturing of nuclear fuel: Past to accident tolerant fuel, Prog. Nucl. Energy, 102(2018), p. 68. doi: 10.1016/j.pnucene.2017.07.016
|
[10] |
R.B. Adamson, C.E. Coleman, and M. Griffiths, Irradiation creep and growth of zirconium alloys: A critical review, J. Nucl. Mater., 521(2019), p. 167. doi: 10.1016/j.jnucmat.2019.04.021
|
[11] |
H.G. Rickover, L.D. Geiger, and B. Lustman, History of The Development of Zirconium Alloys for Use in Nuclear Reactors, US Energy Research and Development Administration, Washington, 1975 [2021-08-01]. https://doi.org/10.2172/4240391
|
[12] |
H. Pomerance, Thermal neutron capture cross sections, Phys. Rev., 88(1952), No. 2, p. 412. doi: 10.1103/PhysRev.88.412
|
[13] |
L. Xu, Y. Xiao, A. van Sandwijk, Q. Xu, and Y. Yang, Production of nuclear grade zirconium: A review, J. Nucl. Mater., 466(2015), p. 21. doi: 10.1016/j.jnucmat.2015.07.010
|
[14] |
G. Pan, C.J. Long, A.M. Garde, A.R. Atwood, J.P. Foster, R.J. Comstock, L. Hallstadius, D.L. Nuhfer, and R. Baranwal, Advanced material for PWR application: AXIOMTM cladding, [in] Proceedings of International Conference on Light Water Reactor Fuel Performance, Orlando, Florida, 2010.
|
[15] |
K.A. Terrani, S.J. Zinkle, and L.L. Snead, Advanced oxidation-resistant iron-based alloys for LWR fuel cladding, J. Nucl. Mater., 448(2014), No. 1-3, p. 420. doi: 10.1016/j.jnucmat.2013.06.041
|
[16] |
S. Kass. The development of the zircaloys, [in] W.K. Anderson, ed., Corrosion of Zirconium Alloys, the American Society for Testing and Materials, Philadelphia, 1964, p. 3.
|
[17] |
C.L. Whitmarsh, Review of Zircaloy-2 and Zircaloy-4 Properties Relevant to N.S. Savannah Reactor Design, Oak Ridge National Laboratory, Oak Ridge, 1962 [2021-08-20]. https://doi.org/10.2172/4827123
|
[18] |
A.M. Garde, S.R. Pati, M.A. Krammen, G.P. Smith, and R.K. Endter, Corrosion behavior of Zircaloy-4 cladding with varying tin content in high-temperature pressurized water reactors, [in] Zirconium in the Nuclear Industry: Tenth International Symposium, Baltimore, MD, 1994.
|
[19] |
G.P. Sabol, G.R. Kilp, M.G. Balfour, and E. Roberts, Development of a cladding alloy for high burnup, [in] Zirconium in the Nuclear Industry: Eighth International Symposium, San Diego, 1988.
|
[20] |
G.P. Sabol, R.J. Comstock, R.A. Weiner, P. Larouere, and R.N. Stanutz, In-reactor corrosion performance of ZIRLOTM and Zircaloy-4, [in] Zirconium in the Nuclear Industry: Tenth International Symposium, Baltimore, MD, 1994.
|
[21] |
S. Doriot, D. Gilbon, J.L. Béchade, M.H. Mathon, L. Legras, and J.P. Mardon, Microstructural stability of M5™ alloy irradiated up to high neutron fluences, [in] Zirconium in the Nuclear Industry: Fourteenth International Symposium, Stockholm, 2005.
|
[22] |
J.P. Mardon, G.L. Garner, and P.B. Hoffmann, M5® a breakthrough in Zr alloy, [in] Proceedings of International Conference on Light Water Reactor Fuel Performance, Orlando, Florida, 2010.
|
[23] |
V. Novikov, V. Markelov, A. Gusev, A. Malgin, A. Kabanov, and Y. Pimenov, Some results on the properties investigations of zirconium alloys for VVER-1000 fuel cladding, [in] 9th International Conference on WWER Fuel Performance, Modelling and Experimental Support, Helena Resort, 2011.
|
[24] |
A.V. Nikulina, Zirconium alloys in nuclear power engineering, Met. Sci. Heat Treat., 46(2004), No. 11-12, p. 458. doi: 10.1007/s11041-005-0002-x
|
[25] |
A.V. Nikulina, V.A. Markelov, M.M. Peregud, Y.K. Bibilashvili, V.A. Kotrekhov, A.F. Lositsky, N.V. Kuzmenko, Y.P. Shevnin, V.K. Shamardin, G.P. Kobylyansky, and A.E. Novoselov, Zirconium alloy E635 as a material for fuel rod cladding and other components of VVER and RBMK cores, [in] Zirconium in the Nuclear Industry: Eleventh International Symposium, Garmisch-Partenkirchen, 1996.
|
[26] |
A.M. Garde, R.J. Comstock, G. Pan, R. Baranwal, L. Hallstadius, T. Cook, and F. Carrera, Advanced zirconium alloy for PWR application, [in] Zirconium in the Nuclear Industry: 16th International Symposium, Chengdu, 2010.
|
[27] |
F. Garzarolli, P. Rudling, and C. Patterson, Performance Evaluation of New Advanced Zr Alloys for PWRs/VVER, Advanced Nuclear Technology International, Mölnlycke, 2011.
|
[28] |
W.J. Zhao, B.X. Zhou, Z. Miao, Q. Peng, Y.R. Jiang, H.M. Jiang, H. Pang, C. Li, Y. Gou, X.W. Yu, S.J. Xue, H.T. Chen, Y.Z. Liu, J.H. Peng, and S.Q. Zhao, Development of advanced zirconium alloys used in Chinese nuclear industry, [in] The 13th International Conference on Nuclear Engineering, Beijing, 2005.
|
[29] |
B. Cox, Pellet-clad interaction (PCI) failures of zirconium alloy fuel cladding—A review, J. Nucl. Mater., 172(1990), No. 3, p. 249. doi: 10.1016/0022-3115(90)90282-R
|
[30] |
J.S. Cheon, Y.H. Koo, B.H. Lee, J.Y. Oh, and D.S. Sohn, Modelling of a pellet–clad mechanical interaction in LWR fuel by considering gaseous swelling, [in] Proceedings of the Seminar on Pellet–clad Interaction in Water Reactor Fuels, Aix-en-Provence, 2004, p. 191.
|
[31] |
B.J. Lewis, W.T. Thompson, M.R. Kleczek, K. Shaheen, M. Juhas, and F.C. Iglesias, Modelling of iodine-induced stress corrosion cracking in CANDU fuel, J. Nucl. Mater., 408(2011), No. 3, p. 209. doi: 10.1016/j.jnucmat.2010.10.063
|
[32] |
K.A. Terrani, Accident tolerant fuel cladding development: Promise, status, and challenges, J. Nucl. Mater., 501(2018), p. 13. doi: 10.1016/j.jnucmat.2017.12.043
|
[33] |
J.J. Serna, P. Tolonen, S. Abeta, S. Watanabe, Y. Kosaka, T. Sendo, and P. Gonzalez, Experimental observations on fuel pellet performance at high burnup, J. Nucl. Sci. Technol., 43(2006), No. 9, p. 1045. doi: 10.1080/18811248.2006.9711194
|
[34] |
M.H.A. Piro, D. Sunderland, S. Livingstone, J. Sercombe, R.W. Revie, A. Quastel, K.A. Terrani, and C. Judge, Pellet–clad interaction behavior in zirconium alloy fuel cladding, Compr. Nucl. Mater., 2(2020), p. 248.
|
[35] |
K. Maeda, Ceramic fuel–cladding interaction, Compr. Nucl. Mater., 3(2012), p. 443.
|
[36] |
M. Peehs, F. Garzarolli, R. Hahn, and E. Steinberg, Diskussion möglicher mechanismen von PCI-defekten, J. Nucl. Mater., 87(1979), No. 2-3, p. 274. doi: 10.1016/0022-3115(79)90564-6
|
[37] |
M. Gaertner and J.C. LaVake, Power ramp testing and non-destructive post-irradiation examinations of high burnup PWR fuel rods, [in] Proceedings of the Specialists’ Meeting on Pellet Cladding Interaction in Water Reactor Fuel, Seattle, 1983.
|
[38] |
B. van der Schaaf, Fracture of Zircaloy-2 in an environment containing iodine, [in] Symposium on Zirconium in Nuclear Application, Portland, 1973.
|
[39] |
P. Bouffioux, J.V. Vliet, P. Deramaix, and M. Lippens, Potential causes of failures associated with power changes in LWR's, J. Nucl. Mater., 87(1979), No. 2-3, p. 251. doi: 10.1016/0022-3115(79)90561-0
|
[40] |
K. Konashi, T. Yato, and H. Kaneko, Radiation effect on partial pressure of fission product iodine, J. Nucl. Mater., 116(1983), No. 1, p. 86. doi: 10.1016/0022-3115(83)90296-9
|
[41] |
J.S. Armijo, L.F. Coffin, and H.S. Rosenbaum, Development of zirconium-barrier fuel cladding, [in] Zirconium in the Nuclear Industry: Tenth International Symposium, Baltimore, MD, 1994.
|
[42] |
A. Garlick and P.D. Wolfenden, Fracture of zirconium alloys in iodine vapour, J. Nucl. Mater., 41(1971), No. 3, p. 274. doi: 10.1016/0022-3115(71)90165-6
|
[43] |
P. Hofmann and J. Spino, Determination of the critical iodine concentration for stress corrosion cracking failure of Zircaloy-4 tubing between 500 and 900°C, J. Nucl. Mater., 107(1982), No. 2-3, p. 297. doi: 10.1016/0022-3115(82)90429-9
|
[44] |
O. Götzmann, Thermochemical evaluation of PCI failures in LWR fuel pins, J. Nucl. Mater., 107(1982), No. 2-3, p. 185. doi: 10.1016/0022-3115(82)90420-2
|
[45] |
D. Cubicciotti, R.L. Jones, and B.C. Syrett, Chemical aspects of iodine-induced stress corrosion cracking of Zircaloys, [in] Zirconium in the Nuclear Industry: Fifth International Symposium, Boston, 1982.
|
[46] |
C. Gillen, A. Garner, A. Plowman, C.P. Race, T. Lowe, C. Jones, K.L. Moore, and P. Frankel, Advanced 3D characterisation of iodine induced stress corrosion cracks in zirconium alloys, Mater. Charact., 141(2018), p. 348. doi: 10.1016/j.matchar.2018.04.034
|
[47] |
B. Cox and R. Haddad, Recent studies of crack initiation during stress corrosion cracking of zirconium alloys, [in] Zirconium in the Nuclear Industry: Seventh International Symposium, Strasbourg, 1987.
|
[48] |
S.Y. Park, J.H. Kim, M.H. Lee, and Y.H. Jeong, Stress-corrosion crack initiation and propagation behavior of Zircaloy-4 cladding under an iodine environment, J. Nucl. Mater., 372(2008), No. 2-3, p. 293. doi: 10.1016/j.jnucmat.2007.03.258
|
[49] |
P. Jacques, F. Lefebvre, and C. Lemaignan, Deformation–corrosion interactions for Zr alloys during I-SCC crack initiation: Part I: Chemical contributions, J. Nucl. Mater., 264(1999), No. 3, p. 239. doi: 10.1016/S0022-3115(98)00501-7
|
[50] |
T. Jezequel, Q. Auzoux, D.L. Boulch, M. Bono, E. Andrieu, C. Blanc, V. Chabretou, N. Mozzani, and M. Rautenberg, Stress corrosion crack initiation of Zircaloy-4 cladding tubes in an iodine vapor environment during creep, relaxation, and constant strain rate tests, J. Nucl. Mater., 499(2018), p. 641. doi: 10.1016/j.jnucmat.2017.07.014
|
[51] |
S.Y. Park, J.H. Kim, M.H. Lee, and Y.H. Jeong, Effects of the microstructure and alloying elements on the iodine-induced stress-corrosion cracking behavior of nuclear fuel claddings, J. Nucl. Mater., 376(2008), No. 1, p. 98. doi: 10.1016/j.jnucmat.2008.01.024
|
[52] |
S.Y. Park, J.H. Kim, B.K. Choi, and Y.H. Jeong, Crack initiation and propagation behavior of zirconium cladding under an environment of iodine-induced stress corrosion, Met. Mater. Int., 13(2007), No. 2, p. 155. doi: 10.1007/BF03027567
|
[53] |
S.B. Farina, G.S. Duffó, and J.R. Galvele, Stress corrosion cracking of zirconium and Zircaloy-4 in iodine-alcoholic solutions, Corrosion, 59(2003), No. 5, p. 436. doi: 10.5006/1.3277575
|
[54] |
S.Y. Park, B.K. Choi, J.Y. Park, and Y.H. Jeong, Effect of hydride on the ISCC crack initiation and propagation in the high burnup-simulated nuclear fuel cladding, [in] Proceedings of the Water Reactor Fuel Performance Meeting, Paris, 2009.
|
[55] |
G.S. Duffó and S.B. Farina, Diffusional control in the intergranular corrosion of some hcp metals in iodine alcoholic solutions, Corros. Sci., 47(2005), No. 6, p. 1459. doi: 10.1016/j.corsci.2004.07.039
|
[56] |
R.B. Adamson, Effect of texture on stress corrosion cracking of irradiated zircaloy in iodine, J. Nucl. Mater., 92(1980), No. 2-3, p. 363. doi: 10.1016/0022-3115(80)90126-9
|
[57] |
W.S. Ryu, J.Y. Lee, Y.H. Kang, and H.C. Suk, Strain rate dependence of iodine-induced stress corrosion cracking of Zircaloy-4 under internal pressurization tests, J. Mater. Sci., 25(1990), No. 7, p. 3167. doi: 10.1007/BF00587669
|
[58] |
M.R. Louthan, R.P. McNitt, and R.D. Sisson, Environmental degradation of engineering materials in hydrogen, [in] Proceedings of Second International Conference on Environmental Degradation of Engineering Materials, Blacksburg, 1981.
|
[59] |
M. Fregonese, C. Olagnon, N. Godin, A. Hamel, and T. Douillard, Strain-hardening influence on iodine induced stress corrosion cracking of Zircaloy-4, J. Nucl. Mater., 373(2008), No. 1-3, p. 59. doi: 10.1016/j.jnucmat.2007.04.052
|
[60] |
B. Meng, M.W. Fu, C.M. Fu, and K.S. Chen, Ductile fracture and deformation behavior in progressive microforming, Mater. Des., 83(2015), p. 14. doi: 10.1016/j.matdes.2015.05.088
|
[61] |
B. Cox and J.C. Wood, The mechanism of SCC of zirconium alloys in halogens, [in] Proc. Int. Conf. on Mechanisms of Environment Sensitive Cracking of Materials, Guildford, 1977, p. 520.
|
[62] |
L. Fournier, A. Serres, Q. Auzoux, D. Leboulch, and G.S. Was, Proton irradiation effect on microstructure, strain localization and iodine-induced stress corrosion cracking in Zircaloy-4, J. Nucl. Mater., 384(2009), No. 1, p. 38. doi: 10.1016/j.jnucmat.2008.10.001
|
[63] |
A. Serres, L. Fournier, M. Frégonèse, Q. Auzoux, and D. Leboulch, The effect of iodine content and specimen orientation on stress corrosion crack growth rate in Zircaloy-4, Corros. Sci., 52(2010), No. 6, p. 2001. doi: 10.1016/j.corsci.2010.02.008
|
[64] |
C. Gillen, A. Garner, C. Anghel, and P. Frankel, Investigating iodine-induced stress corrosion cracking of zirconium alloys using quantitative fractography, J. Nucl. Mater., 539(2020), art. No. 152272. doi: 10.1016/j.jnucmat.2020.152272
|
[65] |
M.L. Rossi and C.D. Taylor, First-principles insights into the nature of zirconium-iodine interactions and the initiation of iodine-induced stress-corrosion cracking, J. Nucl. Mater., 458(2015), p. 1. doi: 10.1016/j.jnucmat.2014.11.114
|
[66] |
J.C. Wood, Factors affecting stress corrosion cracking of Zircaloy in iodine vapour, J. Nucl. Mater., 45(1972), No. 2, p. 105. doi: 10.1016/0022-3115(72)90178-X
|
[67] |
K. Une, Threshold values characterizing iodine-induced SCC of Zircaloys, Res Mechanica, 12(1984), No. 3, p. 161.
|
[68] |
S.B. Farina and G.S. Duffó, Intergranular to transgranular transition in the stress corrosion cracking of Zircaloy-4, Corros. Sci., 46(2004), No. 9, p. 2255. doi: 10.1016/j.corsci.2004.01.004
|
[69] |
C. Gillen, A. Garner, C. Jones, K.L. Moore, P. Tejland, and P. Frankel, High resolution crystallographic and chemical characterisation of iodine induced stress corrosion crack tips formed in irradiated and non-irradiated zirconium alloys, J. Nucl. Mater., 519(2019), p. 166. doi: 10.1016/j.jnucmat.2019.03.027
|
[70] |
E. Munch, L. Duisabeau, M. Fregonese, and L. Fournier, Acoustic emission detection of environmentally assisted cracking in Zircaloy-4 alloy, [in] European Corrosion Conference: Long Term Prediction and Modelling of Corrosion, Nice, 2004.
|
[71] |
C.M. Giordano, S.B. Farina, G.S. Duffó, and J.R. Galvele, Steric hindrance as a rate controlling step in stress corrosion cracking, Corros. Sci., 49(2007), No. 6, p. 2745. doi: 10.1016/j.corsci.2006.12.020
|
[72] |
C.R.F. Azevedo, Selection of fuel cladding material for nuclear fission reactors, Eng. Fail. Anal., 18(2011), No. 8, p. 1943. doi: 10.1016/j.engfailanal.2011.06.010
|
[73] |
J.C. Wood and J.R. Kelm, Effects of irradiation on the iodine-induced stress corrosion cracking of Candu Zircaloy fuel cladding, Res. Mechanica, 8(1983), No. 3, p. 127.
|
[74] |
C. Anghel, A.M.A. Holston, G. Lysell, S. Karlsson, R. Jakobsson, J. Flygare, S.T. Mahmood, D.L. Boulch, and A. Ioan, Experimental and finite element modeling parametric study for iodine-induced stress corrosion cracking of irradiated cladding, [in] Proceedings of International Conference on Light Water Reactor Fuel Performance, Orlando, Florida, 2010, p. 218.
|
[75] |
D.L. Boulch, L. Fournier, and C. Sainte-Catherine, Testing and modelling iodine-induced stress corrosion cracking in stress-relieved Zircaloy-4, [in] Proceedings of the Seminar on Pellet–clad Interaction in Water Reactor Fuels, Aix-en-Provence, 2004.
|
[76] |
A.V.G. Sanchez, S.B. Farina, and G.S. Duffó, Effect of temperature on the stress corrosion cracking of Zircaloy-4 in iodine alcoholic solutions, Corros. Sci., 49(2007), No. 7, p. 3112. doi: 10.1016/j.corsci.2007.01.005
|
[77] |
D.B. Knorr, R.M. Pelloux, and L.F.P. Van Swam, Effects of material condition on the iodine SCC susceptibility of Zircaloy-2 cladding, J. Nucl. Mater., 110(1982), No. 2-3, p. 230. doi: 10.1016/0022-3115(82)90151-9
|
[78] |
M. Nagai, S. Shimada, S. Nishimura, K. Amano, and G. Yagawa, Elucidating the iodine stress corrosion cracking (SCC) process for zircaloy tubing, [in] Proceedings of the Specialists’ Meeting on Pellet Cladding Interaction in Water Reactor Fuel, Seattle, 1983.
|
[79] |
K. Arioka, T. Yamada, T. Terachi, and G. Chiba, Influence of carbide precipitation and rolling direction on intergranular stress corrosion cracking of austenitic stainless steels in hydrogenated high-temperature water, Corrosion, 62(2006), No. 7, p. 568. doi: 10.5006/1.3280670
|
[80] |
P. Hofmann and J. Spino, Chemical aspects of iodine-induced stress corrosion cracking failure of Zircaloy-4 tubing above 50℃, J. Nucl. Mater., 114(1983), No. 1, p. 50. doi: 10.1016/0022-3115(83)90072-7
|
[81] |
R.L. Jones, D. Cubicciotti, and B.C. Syrett, Effects of test temperature, alloy composition, and heat treatment on iodine-induced stress corrosion cracking of unirradiated Zircaloy tubing, J. Nucl. Mater., 91(1980), No. 2-3, p. 277. doi: 10.1016/0022-3115(80)90227-5
|
[82] |
Y.S. Li, Y.H. Liu, G.B. Li, X.X. Dong, Y. Wang, Z.X. Gu, and Y.C. Zhang, Iodine-induced stress corrosion cracking behavior of alloy ZIRLO with Zr coatings by electrodepositing with different pulse current densities, Corros. Sci., 193(2021), art. No. 109890. doi: 10.1016/j.corsci.2021.109890
|
[83] |
R.F. Mattas, F.L. Yaggee, and L.A. Neimark, Effect of zirconium oxide on the stress-corrosion susceptibility of irradiated Zircaloy cladding, [in] Zirconium in the Nuclear Industry: Fifth International Symposium, Boston, 1982.
|
[84] |
P.S. Sidky, Iodine stress corrosion cracking of Zircaloy reactor cladding: Iodine chemistry (a review), J. Nucl. Mater., 256(1998), No. 1, p. 1. doi: 10.1016/S0022-3115(98)00044-0
|
[85] |
B. Gwinner, H. Badji-Bouyssou, M. Benoit, N. Brijiou-Mokrani, P. Fauvet, N. Gruet, P. Laghoutaris, F. Miserque, R. Robin, and M. Tabarant, Corrosion of zirconium in the context of the spent nuclear fuel reprocessing plant, [in] 21st International Conference and Exhibition Nuclear Fuel Cycle for a Low-carbon Future, Paris, 2015.
|