留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 4
Apr.  2023

图(17)  / 表(4)

数据统计

分享

计量
  • 文章访问数:  441
  • HTML全文浏览量:  135
  • PDF下载量:  26
  • 被引次数: 0
Guangming Xie, Ruihai Duan, Yuqian Wang, Zong’an Luo, and Guodong Wang, Microstructure and toughness of thick-gauge pipeline steel joint via double-sided friction stir welding combined with preheating, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 724-733. https://doi.org/10.1007/s12613-022-2434-3
Cite this article as:
Guangming Xie, Ruihai Duan, Yuqian Wang, Zong’an Luo, and Guodong Wang, Microstructure and toughness of thick-gauge pipeline steel joint via double-sided friction stir welding combined with preheating, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 724-733. https://doi.org/10.1007/s12613-022-2434-3
引用本文 PDF XML SpringerLink
研究论文

预热条件下双面搅拌摩擦焊接厚规格管线钢接头的组织与韧性

  • 通讯作者:

    谢广明    E-mail: xiegm@ral.neu.edu.cn

文章亮点

  • (1) 在预热条件下对11 mm厚管线钢板进行双面搅拌摩擦焊接,并获得了无缺陷的焊接接头。
  • (2) 与熔化极气保护焊接接头相比,搅拌摩擦焊接接头临界粗晶热影响区韧性显著改善。
  • (3) 由于发生铁素体静态再结晶,搅拌摩擦焊第一道次焊核区组织明显细化。
  • (4) 在整个搅拌摩擦焊接接头中焊核区韧性最佳,达到母材的112%。
  • 熔焊伴随的高热输入极易引起热影响区(Heat Affected Zone, HAZ)组织的粗化和脆化,尤其是在临界粗晶热影响区(Inter-critically Coarse-grained HAZ, ICCGHAZ),严重削弱接头韧性。本研究中,在预热条件下对11 mm厚的管线钢板进行双面搅拌摩擦焊接(Friction Stir Welding, FSW),并与双面熔化极气保护焊接(Gas Metal Arc Welding, GMAW)接头进行比较,系统地研究了焊接接头中各亚区组织与韧性之间的关系。与GMAW接头相比,FSW接头ICCGHAZ韧性显著改善。通常,由于高的峰值温度和变形抗力,FSW管线钢接头焊核区(Nugget Zone, NZ)组织比较粗大。然而,在本研究中,第一道次NZ(NZ1)在进行第二道次FSW时被重新加热,由于发生铁素体静态再结晶,NZ1组织明显细化。在整个FSW接头中,NZ韧性最佳,达到母材的112%。这归因于NZ1中细小的铁素体晶粒可以有效阻碍裂纹的萌生和偏转。
  • Research Article

    Microstructure and toughness of thick-gauge pipeline steel joint via double-sided friction stir welding combined with preheating

    + Author Affiliations
    • Fusion welding easily causes microstructural coarsening in the heat-affected zone (HAZ) of a thick-gauge pipeline steel joint. This is most significant in the inter-critically coarse-grained HAZ (ICCGHAZ), which considerably deteriorates the toughness of the joint. In the present work, 11-mm thick pipeline steel was joined by preheating and double-sided friction stir welding (FSW). A comparative study on the microstructure and toughness in the ICCGHAZs for FSW and gas metal arc welding (GMAW) was performed. The toughness in the ICCGHAZ for FSW was improved significantly than that in the ICCGHAZ for GMAW. Generally, the nugget zone (NZ) has a coarse microstructure in the FSW steel joint formed at the highest peak temperature. However, in the current study, the microstructure in the one-pass NZ was remarkably refined owing to the static recrystallization of ferrite. An excellent toughness was achieved in the NZ of the pipeline steel joint that employed FSW.
    • loading
    • [1]
      Y.P. Zeng, P.Y. Zhu, and K. Tong, Effect of microstructure on the low temperature toughness of high strength pipeline steels, Int. J. Miner. Metall. Mater., 22(2015), No. 3, p. 254. doi: 10.1007/s12613-015-1069-z
      [2]
      J.B. Ju, W.S. Kim, and J.I. Jang, Variations in DBTT and CTOD within weld heat-affected zone of API X65 pipeline steel, Mater. Sci. Eng. A, 546(2012), p. 258. doi: 10.1016/j.msea.2012.03.062
      [3]
      S.H. Hashemi and D. Mohammadyani, Characterisation of weldment hardness, impact energy and microstructure in API X65 steel, Int. J. Press. Vessels Pip., 98(2012), p. 8. doi: 10.1016/j.ijpvp.2012.05.011
      [4]
      R.H. Duan, G.M. Xie, P. Xue, et al., Microstructural refinement mechanism and its effect on toughness in the nugget zone of high-strength pipeline steel by friction stir welding, J. Mater. Sci. Technol., 93(2021), p. 221. doi: 10.1016/j.jmst.2021.04.008
      [5]
      Z.X. Zhu, L. Kuzmikova, H.J. Li, and F. Barbaro, Effect of inter-critically reheating temperature on microstructure and properties of simulated inter-critically reheated coarse grained heat affected zone in X70 steel, Mater. Sci. Eng. A, 605(2014), p. 8. doi: 10.1016/j.msea.2014.03.034
      [6]
      X.N. Qi, H.S. Di, X.N. Wang, et al., Effect of secondary peak temperature on microstructure and toughness in ICCGHAZ of laser-arc hybrid welded X100 pipeline steel joints, J. Mater. Res. Technol., 9(2020), No. 4, p. 7838. doi: 10.1016/j.jmrt.2020.05.016
      [7]
      H.J. Aval, Microstructural evolution and mechanical properties of friction stir-welded C71000 copper–nickel alloy and 304 austenitic stainless steel, Int. J. Miner. Metall. Mater., 25(2018), No. 11, p. 1294. doi: 10.1007/s12613-018-1682-8
      [8]
      F.C. Liu, Y. Hovanski, M.P. Miles, C.D. Sorensen, and T.W. Nelson, A review of friction stir welding of steels: Tool, material flow, microstructure, and properties, J. Mater. Sci. Technol., 34(2018), No. 1, p. 39. doi: 10.1016/j.jmst.2017.10.024
      [9]
      L.Y. Huang, K.S. Wang, W. Wang, et al., Mechanical and corrosion properties of low-carbon steel prepared by friction stir processing, Int. J. Miner. Metall. Mater., 26(2019), No. 2, p. 202. doi: 10.1007/s12613-019-1725-9
      [10]
      P. Xue, B.L. Xiao, W.G. Wang, et al., Achieving ultrafine dual-phase structure with superior mechanical property in friction stir processed plain low carbon steel, Mater. Sci. Eng. A, 575(2013), p. 30. doi: 10.1016/j.msea.2013.03.033
      [11]
      A. Behjat, M. Shamanian, M. Atapour, and M.A. Sarmadi, Microstructure and corrosion properties of friction stir-welded high-strength low-alloy steel, Trans. Indian Inst. Met., 74(2021), No. 7, p. 1763. doi: 10.1007/s12666-021-02219-4
      [12]
      R.H. Duan, G.M. Xie, Z.A. Luo, et al., Microstructure, crystallography, and toughness in nugget zone of friction stir welded high-strength pipeline steel, Mater. Sci. Eng. A, 791(2020), art. No. 139620. doi: 10.1016/j.msea.2020.139620
      [13]
      A. Tribe and T.W. Nelson, Study on the fracture toughness of friction stir welded API X80, Eng. Fract. Mech., 150(2015), p. 58. doi: 10.1016/j.engfracmech.2015.10.006
      [14]
      Y.F. Sun, H. Fujii, and Y. Morisada, Double-sided friction stir welding of 40 mm thick low carbon steel plates using a pcBN rotating tool, J. Manuf. Process., 50(2020), p. 319. doi: 10.1016/j.jmapro.2019.12.043
      [15]
      H. Aydin and T.W. Nelson, Microstructure and mechanical properties of hard zone in friction stir welded X80 pipeline steel relative to different heat input, Mater. Sci. Eng. A, 586(2013), p. 313. doi: 10.1016/j.msea.2013.07.090
      [16]
      J.A. Avila, J. Rodriguez, P.R. Mei, and A.J. Ramirez, Microstructure and fracture toughness of multipass friction stir welded joints of API-5L-X80 steel plates, Mater. Sci. Eng. A, 673(2016), p. 257. doi: 10.1016/j.msea.2016.07.045
      [17]
      J.A. Ávila, C.O.F.T. Ruchert, P.R. Mei, et al., Fracture toughness assessment at different temperatures and regions within a friction stirred API 5L X80 steel welded plates, Eng. Fract. Mech., 147(2015), p. 176. doi: 10.1016/j.engfracmech.2015.08.006
      [18]
      X.D. Li, C.J. Shang, X.P. Ma, et al., Structure and crystallography of martensite–austenite constituent in the intercritically reheated coarse-grained heat affected zone of a high strength pipeline steel, Mater. Charact., 138(2018), p. 107. doi: 10.1016/j.matchar.2018.01.042
      [19]
      G.M. Xie, R.H. Duan, P. Xue, et al., Microstructure and mechanical properties of X80 pipeline steel joints by friction stir welding under various cooling conditions, Acta Metall. Sin. Engl. Lett., 33(2020), No. 1, p. 88. doi: 10.1007/s40195-019-00940-0
      [20]
      X.D. Li, Y.R. Fan, X.P. Ma, S.V. Subramanian, and C.J. Shang, Influence of Martensite–Austenite constituents formed at different intercritical temperatures on toughness, Mater. Des., 67(2015), p. 457. doi: 10.1016/j.matdes.2014.10.028
      [21]
      X.D. Li, X.P. Ma, S.V. Subramanian, C.J. Shang, and R.D.K. Misra, Influence of prior austenite grain size on martensite–austenite constituent and toughness in the heat affected zone of 700 MPa high strength linepipe steel, Mater. Sci. Eng. A, 616(2014), p. 141. doi: 10.1016/j.msea.2014.07.100
      [22]
      X.J. Di, M. Tong, C.N. Li, C. Zhao, and D.P. Wang, Microstructural evolution and its influence on toughness in simulated inter-critical heat affected zone of large thickness bainitic steel, Mater. Sci. Eng. A, 743(2019), p. 67. doi: 10.1016/j.msea.2018.11.070
      [23]
      A. Lambert, A. Lambert, J. Drillet, et al., Microstructure of martensite-austenite constituents in heat affected zones of high strength low alloy steel welds in relation to toughness properties, Sci. Technol. Weld. Joining, 5(2000), No. 3, p. 168. doi: 10.1179/136217100101538164
      [24]
      G.M. Xie, H.B. Cui, Z.A. Luo, R.D.K. Misra, and G.D. Wang, Asymmetric distribution of microstructure and impact toughness in stir zone during friction stir processed a high strength pipeline steel, Mater. Sci. Eng. A, 704(2017), p. 401. doi: 10.1016/j.msea.2017.08.008
      [25]
      X. Luo, X.H. Chen, T. Wang, S.W. Pan, and Z.D. Wang, Effect of morphologies of martensite–austenite constituents on impact toughness in intercritically reheated coarse-grained heat-affected zone of HSLA steel, Mater. Sci. Eng. A, 710(2018), p. 192. doi: 10.1016/j.msea.2017.10.079
      [26]
      L.Y. Lan, C.L. Qiu, D.W. Zhao, X.H. Gao, and L.X. Du, Microstructural characteristics and toughness of the simulated coarse grained heat affected zone of high strength low carbon bainitic steel, Mater. Sci. Eng. A, 529(2011), p. 192. doi: 10.1016/j.msea.2011.09.017
      [27]
      J.W. Morris Jr, Stronger, tougher steels, Science, 320(2008), No. 5879, p. 1022. doi: 10.1126/science.1158994
      [28]
      P A. Manohar, M. Ferry, and T. Chandra, Recrystallization of ferrite and austenite, [in] Reference Module in Materials Science and Materials Engineering, Elsevier, 2016.
      [29]
      H.B. Cui, G.M. Xie, Z.A. Luo, et al., The microstructural evolution and impact toughness of nugget zone in friction stir welded X100 pipeline steel, J. Alloys Compd., 681(2016), p. 426. doi: 10.1016/j.jallcom.2016.03.299
      [30]
      H.F. Lan, L.X. du, and R.D.K. Misra, Effect of microstructural constituents on strength-toughness combination in a low carbon bainitic steel, Mater. Sci. Eng. A, 611(2014), p. 194. doi: 10.1016/j.msea.2014.05.084
      [31]
      G.M. Xie, R.H. Duan, Y.Q. Wang, et al., Crystallography of the nugget zone of bainitic steel by friction stir welding in various cooling mediums, Mater. Charact., 182(2021), art. No. 111523. doi: 10.1016/j.matchar.2021.111523
      [32]
      X.Y. Xu, J.Z. Li, W.J. Li, et al., Experimental and theoretical study on static recrystallization of a low-density ferritic steel containing 4 mass% aluminum, Mater. Des., 180(2019), art. No. 107924. doi: 10.1016/j.matdes.2019.107924

    Catalog


    • /

      返回文章
      返回