Cite this article as: |
Guangming Xie, Ruihai Duan, Yuqian Wang, Zong’an Luo, and Guodong Wang, Microstructure and toughness of thick-gauge pipeline steel joint via double-sided friction stir welding combined with preheating, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 724-733. https://doi.org/10.1007/s12613-022-2434-3 |
谢广明 E-mail: xiegm@ral.neu.edu.cn
[1] |
Y.P. Zeng, P.Y. Zhu, and K. Tong, Effect of microstructure on the low temperature toughness of high strength pipeline steels, Int. J. Miner. Metall. Mater., 22(2015), No. 3, p. 254. doi: 10.1007/s12613-015-1069-z
|
[2] |
J.B. Ju, W.S. Kim, and J.I. Jang, Variations in DBTT and CTOD within weld heat-affected zone of API X65 pipeline steel, Mater. Sci. Eng. A, 546(2012), p. 258. doi: 10.1016/j.msea.2012.03.062
|
[3] |
S.H. Hashemi and D. Mohammadyani, Characterisation of weldment hardness, impact energy and microstructure in API X65 steel, Int. J. Press. Vessels Pip., 98(2012), p. 8. doi: 10.1016/j.ijpvp.2012.05.011
|
[4] |
R.H. Duan, G.M. Xie, P. Xue, et al., Microstructural refinement mechanism and its effect on toughness in the nugget zone of high-strength pipeline steel by friction stir welding, J. Mater. Sci. Technol., 93(2021), p. 221. doi: 10.1016/j.jmst.2021.04.008
|
[5] |
Z.X. Zhu, L. Kuzmikova, H.J. Li, and F. Barbaro, Effect of inter-critically reheating temperature on microstructure and properties of simulated inter-critically reheated coarse grained heat affected zone in X70 steel, Mater. Sci. Eng. A, 605(2014), p. 8. doi: 10.1016/j.msea.2014.03.034
|
[6] |
X.N. Qi, H.S. Di, X.N. Wang, et al., Effect of secondary peak temperature on microstructure and toughness in ICCGHAZ of laser-arc hybrid welded X100 pipeline steel joints, J. Mater. Res. Technol., 9(2020), No. 4, p. 7838. doi: 10.1016/j.jmrt.2020.05.016
|
[7] |
H.J. Aval, Microstructural evolution and mechanical properties of friction stir-welded C71000 copper–nickel alloy and 304 austenitic stainless steel, Int. J. Miner. Metall. Mater., 25(2018), No. 11, p. 1294. doi: 10.1007/s12613-018-1682-8
|
[8] |
F.C. Liu, Y. Hovanski, M.P. Miles, C.D. Sorensen, and T.W. Nelson, A review of friction stir welding of steels: Tool, material flow, microstructure, and properties, J. Mater. Sci. Technol., 34(2018), No. 1, p. 39. doi: 10.1016/j.jmst.2017.10.024
|
[9] |
L.Y. Huang, K.S. Wang, W. Wang, et al., Mechanical and corrosion properties of low-carbon steel prepared by friction stir processing, Int. J. Miner. Metall. Mater., 26(2019), No. 2, p. 202. doi: 10.1007/s12613-019-1725-9
|
[10] |
P. Xue, B.L. Xiao, W.G. Wang, et al., Achieving ultrafine dual-phase structure with superior mechanical property in friction stir processed plain low carbon steel, Mater. Sci. Eng. A, 575(2013), p. 30. doi: 10.1016/j.msea.2013.03.033
|
[11] |
A. Behjat, M. Shamanian, M. Atapour, and M.A. Sarmadi, Microstructure and corrosion properties of friction stir-welded high-strength low-alloy steel, Trans. Indian Inst. Met., 74(2021), No. 7, p. 1763. doi: 10.1007/s12666-021-02219-4
|
[12] |
R.H. Duan, G.M. Xie, Z.A. Luo, et al., Microstructure, crystallography, and toughness in nugget zone of friction stir welded high-strength pipeline steel, Mater. Sci. Eng. A, 791(2020), art. No. 139620. doi: 10.1016/j.msea.2020.139620
|
[13] |
A. Tribe and T.W. Nelson, Study on the fracture toughness of friction stir welded API X80, Eng. Fract. Mech., 150(2015), p. 58. doi: 10.1016/j.engfracmech.2015.10.006
|
[14] |
Y.F. Sun, H. Fujii, and Y. Morisada, Double-sided friction stir welding of 40 mm thick low carbon steel plates using a pcBN rotating tool, J. Manuf. Process., 50(2020), p. 319. doi: 10.1016/j.jmapro.2019.12.043
|
[15] |
H. Aydin and T.W. Nelson, Microstructure and mechanical properties of hard zone in friction stir welded X80 pipeline steel relative to different heat input, Mater. Sci. Eng. A, 586(2013), p. 313. doi: 10.1016/j.msea.2013.07.090
|
[16] |
J.A. Avila, J. Rodriguez, P.R. Mei, and A.J. Ramirez, Microstructure and fracture toughness of multipass friction stir welded joints of API-5L-X80 steel plates, Mater. Sci. Eng. A, 673(2016), p. 257. doi: 10.1016/j.msea.2016.07.045
|
[17] |
J.A. Ávila, C.O.F.T. Ruchert, P.R. Mei, et al., Fracture toughness assessment at different temperatures and regions within a friction stirred API 5L X80 steel welded plates, Eng. Fract. Mech., 147(2015), p. 176. doi: 10.1016/j.engfracmech.2015.08.006
|
[18] |
X.D. Li, C.J. Shang, X.P. Ma, et al., Structure and crystallography of martensite–austenite constituent in the intercritically reheated coarse-grained heat affected zone of a high strength pipeline steel, Mater. Charact., 138(2018), p. 107. doi: 10.1016/j.matchar.2018.01.042
|
[19] |
G.M. Xie, R.H. Duan, P. Xue, et al., Microstructure and mechanical properties of X80 pipeline steel joints by friction stir welding under various cooling conditions, Acta Metall. Sin. Engl. Lett., 33(2020), No. 1, p. 88. doi: 10.1007/s40195-019-00940-0
|
[20] |
X.D. Li, Y.R. Fan, X.P. Ma, S.V. Subramanian, and C.J. Shang, Influence of Martensite–Austenite constituents formed at different intercritical temperatures on toughness, Mater. Des., 67(2015), p. 457. doi: 10.1016/j.matdes.2014.10.028
|
[21] |
X.D. Li, X.P. Ma, S.V. Subramanian, C.J. Shang, and R.D.K. Misra, Influence of prior austenite grain size on martensite–austenite constituent and toughness in the heat affected zone of 700 MPa high strength linepipe steel, Mater. Sci. Eng. A, 616(2014), p. 141. doi: 10.1016/j.msea.2014.07.100
|
[22] |
X.J. Di, M. Tong, C.N. Li, C. Zhao, and D.P. Wang, Microstructural evolution and its influence on toughness in simulated inter-critical heat affected zone of large thickness bainitic steel, Mater. Sci. Eng. A, 743(2019), p. 67. doi: 10.1016/j.msea.2018.11.070
|
[23] |
A. Lambert, A. Lambert, J. Drillet, et al., Microstructure of martensite-austenite constituents in heat affected zones of high strength low alloy steel welds in relation to toughness properties, Sci. Technol. Weld. Joining, 5(2000), No. 3, p. 168. doi: 10.1179/136217100101538164
|
[24] |
G.M. Xie, H.B. Cui, Z.A. Luo, R.D.K. Misra, and G.D. Wang, Asymmetric distribution of microstructure and impact toughness in stir zone during friction stir processed a high strength pipeline steel, Mater. Sci. Eng. A, 704(2017), p. 401. doi: 10.1016/j.msea.2017.08.008
|
[25] |
X. Luo, X.H. Chen, T. Wang, S.W. Pan, and Z.D. Wang, Effect of morphologies of martensite–austenite constituents on impact toughness in intercritically reheated coarse-grained heat-affected zone of HSLA steel, Mater. Sci. Eng. A, 710(2018), p. 192. doi: 10.1016/j.msea.2017.10.079
|
[26] |
L.Y. Lan, C.L. Qiu, D.W. Zhao, X.H. Gao, and L.X. Du, Microstructural characteristics and toughness of the simulated coarse grained heat affected zone of high strength low carbon bainitic steel, Mater. Sci. Eng. A, 529(2011), p. 192. doi: 10.1016/j.msea.2011.09.017
|
[27] |
J.W. Morris Jr, Stronger, tougher steels, Science, 320(2008), No. 5879, p. 1022. doi: 10.1126/science.1158994
|
[28] |
P A. Manohar, M. Ferry, and T. Chandra, Recrystallization of ferrite and austenite, [in] Reference Module in Materials Science and Materials Engineering, Elsevier, 2016.
|
[29] |
H.B. Cui, G.M. Xie, Z.A. Luo, et al., The microstructural evolution and impact toughness of nugget zone in friction stir welded X100 pipeline steel, J. Alloys Compd., 681(2016), p. 426. doi: 10.1016/j.jallcom.2016.03.299
|
[30] |
H.F. Lan, L.X. du, and R.D.K. Misra, Effect of microstructural constituents on strength-toughness combination in a low carbon bainitic steel, Mater. Sci. Eng. A, 611(2014), p. 194. doi: 10.1016/j.msea.2014.05.084
|
[31] |
G.M. Xie, R.H. Duan, Y.Q. Wang, et al., Crystallography of the nugget zone of bainitic steel by friction stir welding in various cooling mediums, Mater. Charact., 182(2021), art. No. 111523. doi: 10.1016/j.matchar.2021.111523
|
[32] |
X.Y. Xu, J.Z. Li, W.J. Li, et al., Experimental and theoretical study on static recrystallization of a low-density ferritic steel containing 4 mass% aluminum, Mater. Des., 180(2019), art. No. 107924. doi: 10.1016/j.matdes.2019.107924
|