留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 4
Apr.  2023

图(11)  / 表(5)

数据统计

分享

计量
  • 文章访问数:  735
  • HTML全文浏览量:  271
  • PDF下载量:  44
  • 被引次数: 0
Yunsong Liu, Enhui Wang, Linchao Xu, Tao Yang, Zhijun He, Tongxiang Liang,  and Xinmei Hou, Synthesis of CA6/AlON composite with enhanced slag resistance, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 756-765. https://doi.org/10.1007/s12613-022-2435-2
Cite this article as:
Yunsong Liu, Enhui Wang, Linchao Xu, Tao Yang, Zhijun He, Tongxiang Liang,  and Xinmei Hou, Synthesis of CA6/AlON composite with enhanced slag resistance, Int. J. Miner. Metall. Mater., 30(2023), No. 4, pp. 756-765. https://doi.org/10.1007/s12613-022-2435-2
引用本文 PDF XML SpringerLink
研究论文

具有优异抗渣性能的CA6/AlON复合材料的制备研究

  • 通讯作者:

    王恩会    E-mail: houxinmeiustb@ustb.edu.cn

    侯新梅    E-mail: wangenhui@ustb.edu.cn

文章亮点

  • (1) 采用两步法制备了CA6和AlON两相分布均匀的CA6/AlON复合材料,其中AlON的最佳添加量优化为10wt%。在此条件下,其体积密度和显气孔率分别为2.26 g·cm−3和20.2%。
  • (2) 相较于单相CA6材料,CA6/AlON复合材料表现出优异的抗熔渣侵蚀和渗透的能力。
  • (3)结合实验和分子动力学模拟等手段揭示了添加AlON对提升CA6抗渣侵蚀性能的机理,即:AlON的加入在很大程度上降低了CA6/AlON复合材料与熔渣的润湿性;熔渣释放出的O2−离子氧化AlON可形成Al2O3,Al2O3可进一步与Ca2+和O2−离子反应形成致密连续的CA2层,能有效抑制熔渣的进一步渗透和腐蚀。
  • 六铝酸钙(CA6)作为一种具有优异综合性能的高温陶瓷备受关注。然而,CA6独特的磁铅石结构容易导致晶粒各向异性生长形成板片状,不利于CA6烧结致密化,当用作钢包内衬耐火材料时易因气孔率高导致其耐熔渣侵蚀和渗透能力下降。因此,提高CA6的烧结致密性是目前亟需解决的问题。已有研究表明,第二相的加入是提高材料致密化的有效方法之一。受此启发,本文分别采用一步法和两步法在CA6中加入不同量的AlON来提高CA6的致密度进而提升其抗渣性能。其中,以Al2O3、CaCO3和Al的混合物为原料的一步法制备过程中容易形成AlON团簇,最终导致CA6/AlON复合材料孔隙率偏高。采用两步法时,先分别制备CA6和AlON,然后将两者混匀并再次进行烧结,可形成CA6和AlON均匀分布的复合材料。进一步通过实验优化,两步法中AlON的最佳添加量被确定为10wt%。在此条件下,CA6/AlON复合材料的显气孔率(20%)相较于纯CA6(29%)得到了明显改善。最后,以纯CA6为对照组的试验表明,采用两步法制备的CA6/AlON复合材料具有更好的抗熔渣腐蚀性能。原因主要有以下两个方面:(1)AlON的加入会在很大程度上减少CA6/AlON复合材料的孔隙率,并且会降低复合材料在熔渣中的润湿性;(2)AlON会被熔渣释放的O2−离子氧化生成Al2O3,Al2O3与Ca2+和O2−离子发生反应,形成致密连续的CA2层,可有效抑制熔渣的进一步渗透和腐蚀,从而提高CA6/AlON复合材料的抗渣性能。
  • Research Article

    Synthesis of CA6/AlON composite with enhanced slag resistance

    + Author Affiliations
    • Different amounts of AlON have been introduced in calcium hexaaluminate (CA6) using two approaches, that is, one-step and two-step methods, to improve the slag resistance of CA6. A one-step method can directly sinter the mixtures combining Al2O3, CaCO3, and Al in flowing nitrogen, in which AlON clusters are always formed because of the poor wettability of Al by Al2O3, leading to the high porosity of CA6/AlON composite. In a two-step method, CA6 and AlON are prepared separately and then mixed and sintered in flowing nitrogen. Compared with the sample prepared by the one-step method, CA6 and AlON in composite by the two-step method are more uniformly distributed, and the optimized amount of AlON added is 10wt%. The slag corrosion and penetration test shows that the CA6/AlON composite using the two-step method exhibits superior slag corrosion protection. The promoted effect of AlON on slag penetration and corrosion resistance is also discussed.
    • loading
    • [1]
      J.H. Chen, H.Y. Chen, W.J. Mi, Z. Cao, B. Li, and G.Q. Li, Synthesis of CaO·2MgO·8Al2O3 (CM2A8) and its slag resistance mechanism, J. Eur. Ceram. Soc., 37(2017), No. 4, p. 1799. doi: 10.1016/j.jeurceramsoc.2016.11.018
      [2]
      B.B. Dong, B. Yuan, G. Wang, K. Chen, J.S. Han, and H.X. Li, Fabrication of porous SiC/calcium hexaluminate composites, J. Eur. Ceram. Soc., 36(2016), No. 16, p. 3889. doi: 10.1016/j.jeurceramsoc.2016.05.036
      [3]
      L.C. Xu, E.H. Wang, X.M. Hou, J.H. Chen, Z.J. He, and T.X. Liang, Effect of incorporation of nitrogen on calcium hexaaluminate, J. Eur. Ceram. Soc., 40(2020), No. 15, p. 6155. doi: 10.1016/j.jeurceramsoc.2020.06.057
      [4]
      B. Li, G.Q. Li, H.Y. Chen, J.H. Chen, X.M. Hou, and Y. Li, Physical and mechanical properties of hot-press sintering ternary CM2A8 (CaMg2Al16O27) and C2M2A14 (Ca2Mg2Al28O46) ceramics, J. Adv. Ceram., 7(2018), No. 3, p. 229. doi: 10.1007/s40145-018-0274-4
      [5]
      A. Utsunomiya, K. Tanaka, H. Morikawa, F. Marumo, and H. Kojima, Structure refinement of CaO·6Al2O3, J. Solid State Chem., 75(1988), No. 1, p. 197. doi: 10.1016/0022-4596(88)90317-9
      [6]
      C. Domı́nguez, J. Chevalier, R. Torrecillas, and G. Fantozzi, Microstructure development in calcium hexaluminate, J. Eur. Ceram. Soc., 21(2001), No. 3, p. 381. doi: 10.1016/S0955-2219(00)00143-6
      [7]
      N. Iyi, S. Takekawa, and S. Kimura, Crystal chemistry of hexaaluminates: β-alumina and magnetoplumbite structures, J. Solid State Chem., 83(1989), No. 1, p. 8. doi: 10.1016/0022-4596(89)90048-0
      [8]
      J.H. Chen, H.Y. Chen, M.W. Yan, Z. Cao, and W.J. Mi, Formation mechanism of calcium hexaluminate, Int. J. Miner. Metall. Mater., 23(2016), No. 10, p. 1225. doi: 10.1007/s12613-016-1342-9
      [9]
      R. Salomão, V.L. Ferreira, I.R. de Oliveira, A.D.V. Souza, and W.R. Correr, Mechanism of pore generation in calcium hexaluminate (CA6) ceramics formed in situ from calcined alumina and calcium carbonate aggregates, J. Eur. Ceram. Soc., 36(2016), No. 16, p. 4225. doi: 10.1016/j.jeurceramsoc.2016.05.026
      [10]
      D. Asmi and I.M. Low, Physical and mechanical characteristics of in situ alumina/calcium hexaluminate composites, J. Mater. Sci. Lett., 17(1998), No. 20, p. 1735. doi: 10.1023/A:1006683421321
      [11]
      B.A. Vázquez, P. Pena, A.H. de Aza, M.A. Sainz, and A. Caballero, Corrosion mechanism of polycrystalline corundum and calcium hexaluminate by calcium silicate slags, J. Eur. Ceram. Soc., 29(2009), No. 8, p. 1347. doi: 10.1016/j.jeurceramsoc.2008.08.031
      [12]
      L. Xu, M. Chen, N. Wang, and X.L. Yin, Corrosion mechanism of MgAl2O4–CaAl4O7–CaAl12O19 composite by steel ladle slag: Effect of additives, J. Eur. Ceram. Soc., 37(2017), No. 7, p. 2737. doi: 10.1016/j.jeurceramsoc.2017.02.025
      [13]
      L. Xu, X.L. Yin, N. Wang, and M. Chen, Effect of Y2O3 addition on the densification, microstructure and mechanical properties of MgAl2O4–CaAl4O7–CaAl12O19 composites, J. Alloys Compd., 702(2017), p. 472. doi: 10.1016/j.jallcom.2017.01.282
      [14]
      B. Feng, Z.H. Wang, Y.H. Fan, J.H. Gu, and Y. Zhang, Creep deformation behavior during densification of ZrB2–SiBCN ceramics with ZrO2 additive, J. Adv. Ceram., 9(2020), No. 5, p. 544. doi: 10.1007/s40145-020-0393-6
      [15]
      S.Z. Yao, E.H. Wang, J.H. Chen, K.C. Chou, and X.M. Hou, Effectively controlling the crystal growth of Cr2O3 using SiO2 as the second phase, J. Am. Ceram. Soc., 102(2019), No. 4, p. 2187.
      [16]
      Q. Luo, H.Z. Gu, Y.N. Fang, A. Huang, M.J. Zhang, and Z.A. Luo, Enhancement of the densification and thermal properties of Ca2Mg2Al28O46 ceramic by MnO addition, Ceram. Int., 46(2020), No. 11, p. 18734. doi: 10.1016/j.ceramint.2020.04.188
      [17]
      L. Xu, M. Chen, L.Y. Jin, X.L. Yin, N. Wang, and L. Liu, Effect of ZrO2 addition on densification and mechanical properties of MgAl2O4–CaAl4O7–CaAl12O19 composite, J. Am. Ceram. Soc., 98(2015), No. 12, p. 4117. doi: 10.1111/jace.13955
      [18]
      M. Shabani, M.H. Paydar, and M.M. Moshksar, Fabrication and densification enhancement of SiC-particulate-reinforced copper matrix composites prepared via the sinter-forging process, Int. J. Miner. Metall. Mater., 21(2014), No. 9, p. 934. doi: 10.1007/s12613-014-0992-8
      [19]
      Y.N. Shen, Y. Xing, P. Jiang, et al., Corrosion resistance evaluation of highly dispersed MgO–MgAl2O4–ZrO2 composite and analysis of its corrosion mechanism: A chromium-free refractory for RH refining kilns, Int. J. Miner. Metall. Mater., 26(2019), No. 8, p. 1038. doi: 10.1007/s12613-019-1807-8
      [20]
      N.D. Corbin, Aluminum oxynitride spinel: A review, J. Eur. Ceram. Soc., 5(1989), No. 3, p. 143. doi: 10.1016/0955-2219(89)90030-7
      [21]
      X.C. Zhong and H.L. Zhao, High-temperature properties of oxide-nonoxide refractory composites, Refractories, 34(2000), No. 2, p. 63.
      [22]
      Y. Hong, Y. Li, S.H. Tong, D.D. Yue, and J.J. Ma, Effect of the addition of Al powder on the microstructure and phase constitution of magnesia-spinel composites sintered at 1800°C in N2, Key Eng. Mater., 697(2016), p. 345. doi: 10.4028/www.scientific.net/KEM.697.345
      [23]
      K. Takeda and T. Hosaka, Characteristics of new raw material AlON for refractories, Interceram, 38(1989), No. 1, p. 18.
      [24]
      C.H. Ma, Y. Li, P. Jiang, W.D. Xue, and J.H. Chen, Formation mechanism of γ-AlON and β-SiC reinforcements in a phenolic resin-bonded Al–Si–Al2O3 composite at 1700°C in flowing N2, J. Mater. Sci., 55(2020), No. 14, p. 5772. doi: 10.1007/s10853-020-04450-8
      [25]
      K. Murakami, A. Iwasaki, Y. Akatsuka, and I. Komara, One results of sliding nozzle refractories using aluminum oxynitride, Refractories, 38(1986), No. 336, p. 18.
      [26]
      T. Hosaka and M. Kato, A study of compositional modification of trough mixture by using aluminum oxinitride, Refractories, 37(1985), No. 333, p. 582.
      [27]
      W.Y. Sun and T.S. Yen, Phase relationships in the system Ca–Al–O–N, Mater. Lett., 8(1989), No. 5, p. 150. doi: 10.1016/0167-577X(89)90180-8
      [28]
      H.X. Willems, M.M.R.M. Hendrix, R. Metselaar, and G. de With, Thermodynamics of AlON I: Stability at lower temperatures, J. Eur. Ceram. Soc., 10(1992), No. 4, p. 327. doi: 10.1016/0955-2219(92)90088-U
      [29]
      N. Zhang, B. Liang, X.Y. Wang, H.M. Kan, K.W. Zhu, and X.J. Zhao, The pressureless sintering and mechanical properties of AlON ceramic, Mater. Sci. Eng. A, 528(2011), No. 19-20, p. 6259. doi: 10.1016/j.msea.2011.04.072
      [30]
      Y. Wang, X.M. Xie, J.Q. Qi, et al., Two-step preparation of AlON transparent ceramics with powder synthesized by aluminothermic reduction and nitridation method, J. Mater. Res., 29(2014), No. 19, p. 2325. doi: 10.1557/jmr.2014.230
      [31]
      M.Y. Su, Y.F. Zhou, K. Wang, Z.F. Yang, Y.G. Cao, and M.C. Hong, Highly transparent AlON sintered from powder synthesized by direct nitridation, J. Eur. Ceram. Soc., 35(2015), No. 4, p. 1173. doi: 10.1016/j.jeurceramsoc.2014.10.036
      [32]
      J.L. Rodríguez-Galicia, A.H. de Aza, J.C. Rendón-Angeles, and P. Pena, The mechanism of corrosion of MgO–CaZrO3–calcium silicate materials by cement clinker, J. Eur. Ceram. Soc., 27(2007), No. 1, p. 79. doi: 10.1016/j.jeurceramsoc.2006.01.014
      [33]
      Z.Y. Deng, M.Y. Zhu, B.J. Zhong, and Y.G. Dai, Metallurgical properties of refining slag with different basicities, J. Northeast. Univ. (Nat. Sci.), 33(2012), No. 4, p. 555.
      [34]
      E.H. Wang, J.H. Chen, X.J. Hu, K.C. Chou, and X.M. Hou, Evolution of aluminum hydroxides at the initial stage of aluminum nitride powder hydrolysis, Ceram. Int., 42(2016), No. 9, p. 11429. doi: 10.1016/j.ceramint.2016.04.079
      [35]
      S. Plimpton, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 117(1995), No. 1, p. 1. doi: 10.1006/jcph.1995.1039
      [36]
      M. Matsui, Molecular dynamics study of the structures and bulk moduli of crystals in the system CaO–MgO–Al2O3–SiO2, Phys. Chem. Miner., 23(1996), No. 6, p. 345.
      [37]
      C.H. Jiang, K.J. Li, J.L. Zhang, et al., Molecular dynamics simulation on the effect of MgO/Al2O3 ratio on structure and properties of blast furnace slag under different basicity conditions, Metall. Mater. Trans. B, 50(2019), No. 1, p. 367. doi: 10.1007/s11663-018-1450-1
      [38]
      J.E. Jones, On the determination of molecular fields. II. From the equation of state of a gas, Proc. Roy. Soc. A, 106(1924), No. 738, p. 463.
      [39]
      N.H. Kim, Q.D. Fun, K. Komeya, and T. Meguro, Phase reaction and sintering behavior in the pseudoternary system AlN–Y2O3–Al2O3, J. Am. Ceram. Soc., 79(2005), No. 10, p. 2645. doi: 10.1111/j.1151-2916.1996.tb09029.x
      [40]
      P. Korgul, D.R. Wilson, and W.E. Lee, Microstructural analysis of corroded alumina-spinel castable refractories, J. Eur. Ceram. Soc., 17(1997), No. 1, p. 77. doi: 10.1016/S0955-2219(96)00073-8
      [41]
      J.H. Chen, H.Y. Chen, W.J. Mi, Z. Cao, B. Li, and C.J. Liang, Substitution of Ba for Ca in the structure of CaAl12O19, J. Am. Ceram. Soc., 100(2017), No. 1, p. 413. doi: 10.1111/jace.14482
      [42]
      J.W. McCauley, P. Patel, M.W. Chen, et al., AlON: A brief history of its emergence and evolution, J. Eur. Ceram. Soc., 29(2009), No. 2, p. 223. doi: 10.1016/j.jeurceramsoc.2008.03.046
      [43]
      L.A. Díaz, R. Torrecillas, A.H. de Aza, and P. Pena, Effect of spinel content on slag attack resistance of high alumina refractory castables, J. Eur. Ceram. Soc., 27(2007), No. 16, p. 4623. doi: 10.1016/j.jeurceramsoc.2007.04.007
      [44]
      M.A.L. Braulio, A.G.T. Martinez, A.P. Luz, C. Liebske, and V.C. Pandolfelli, Basic slag attack of spinel-containing refractory castables, Ceram. Int., 37(2011), No. 6, p. 1935. doi: 10.1016/j.ceramint.2011.02.007
      [45]
      A.P. Luz, M.A.L. Braulio, A.G.T. Martinez, and V.C. Pandolfelli, Slag attack evaluation of in situ spinel-containing refractory castables via experimental tests and thermodynamic simulations, Ceram. Int., 38(2012), No. 2, p. 1497. doi: 10.1016/j.ceramint.2011.09.033
      [46]
      C.Y. Guo, E.H. Wang, X.M. Hou, et al., Preparation of Zr4+ doped calcium hexaaluminate with improved slag penetration resistance, J. Am. Ceram. Soc., 104(2021), No. 9, p. 4854. doi: 10.1111/jace.17859
      [47]
      M.W. Yan, Y. Li, H.Y. Li, Y. Sun, H.X. Qin, and Q.Y. Zheng, Preparation and ladle slag resistance mechanism of MgAlON bonded Al2O3–MgAlON–Zr2Al3C4–(Al2CO)1−x(AlN)x refractories, Ceram. Int., 45(2019), No. 1, p. 346. doi: 10.1016/j.ceramint.2018.09.173
      [48]
      Y. Oishi, A.R. Cooper, and W.D. Kingery, Dissolution in ceramic systems: III, boundary layer concentration gradients, J. Am. Ceram. Soc., 48(1965), No. 2, p. 88. doi: 10.1111/j.1151-2916.1965.tb11805.x
      [49]
      Y. Park and D.J. Min, Sulfide capacity of CaO–SiO2–FeO–Al2O3–MgOsatd. slag, ISIJ Int., 56(2016), No. 4, p. 520. doi: 10.2355/isijinternational.ISIJINT-2015-524
      [50]
      J.J. Wang, L.F. Zhang, G. Cheng, Q. Ren, and Y. Ren, Dynamic mass variation and multiphase interaction among steel, slag, lining refractory and nonmetallic inclusions: Laboratory experiments and mathematical prediction, Int. J. Miner. Metall. Mater., 28(2021), No. 8, p. 1298. doi: 10.1007/s12613-021-2304-4
      [51]
      C.Y. Xu, C. Wang, R.Z. Xu, J.L. Zhang, and K.X. Jiao, Effect of Al2O3 on the viscosity of CaO–SiO2–Al2O3–MgO–Cr2O3 slags, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 797. doi: 10.1007/s12613-020-2187-9

    Catalog


    • /

      返回文章
      返回