留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 4
Apr.  2022

图(6)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  2138
  • HTML全文浏览量:  545
  • PDF下载量:  112
  • 被引次数: 0
Zhenxing Liu, Fangjie Deng, Yuan Zhou, Yanjie Liang, Cong Peng, Bing Peng, Feiping Zhao, Zhihui Yang,  and Liyuan Chai, Effect of transport agent boron triiodide on the synthesis and crystal quality of boron arsenide, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 662-670. https://doi.org/10.1007/s12613-022-2438-z
Cite this article as:
Zhenxing Liu, Fangjie Deng, Yuan Zhou, Yanjie Liang, Cong Peng, Bing Peng, Feiping Zhao, Zhihui Yang,  and Liyuan Chai, Effect of transport agent boron triiodide on the synthesis and crystal quality of boron arsenide, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 662-670. https://doi.org/10.1007/s12613-022-2438-z
引用本文 PDF XML SpringerLink
研究论文

传输剂三碘化硼对砷化硼合成和晶体质量的影响

  • 通讯作者:

    梁彦杰    E-mail: LiangyanjieCSU@163.com

    柴立元    E-mail: lychai@csu.edu.cn

文章亮点

  • (1) 系统研究了三碘化硼对砷化硼合成反应的加速作用。
  • (2) 解析了三碘化硼对砷化硼晶体形貌和微观结构缺陷的优化作用。
  • (3) 制备了几十微米级单晶砷化硼晶种。
  • 立方砷化硼作为一种新兴的高热导率半导体材料,在高性能电子器件领域的潜在应用引起了研究者的广泛关注。然而,可控制备砷化硼单晶体的相关技术成为制约其应用和发展的关键。本文旨在研究一种新的传输剂对制备单晶砷化硼的影响。采用三碘化硼作为传输剂合成并制备了具有单晶特性的砷化硼晶体。研究结果表明,三碘化硼和常用的传输剂单质碘都能加速合成砷化硼,在820°C、1.5 MPa的条件下三碘化硼可将砷化硼的的质量分数从不添加传输剂时的约12%提高到90%以上,远超温度和压力的加速效果。形貌与结构表征结果表明,传输剂可减小10%~20%的拉曼谱和X射线衍射谱的半峰宽,显著提高晶体质量。其中,碘化硼消除了单质碘引起的砷化硼晶体团聚生长,将晶体内孪晶尺寸从约50 nm减小至约15 nm, 并协调硼砷结合比例,使砷化硼晶体的化学计量比(约0.990)接近理论值1. 这种协调作用也影响晶面层间距的变化,使{111}晶面层间距维持在0.275 nm (理论值0.276 nm),小于无传输剂(0.280 nm)和使用单质碘传输剂(0.286 nm)的影响。进一步通过化学气相传输法,利用传输剂三碘化硼生长了数十微米尺寸的单晶砷化硼,验证了三碘化硼传输剂的应用效果。为生长微米级单晶砷化硼晶种提供了一种快速、简便的方法。
  • Research Article

    Effect of transport agent boron triiodide on the synthesis and crystal quality of boron arsenide

    + Author Affiliations
    • Cubic boron arsenide (BAs) has attracted great attention due to its high thermal conductivity, however, its controllable, stable, and ideal preparation remains challenging. Herein, we investigated the effect of iodine-containing transport agents I2 and boron triiodide (BI3) on BAs synthesized and grown through chemical vapor transport. Results show that similar to the commonly used I2, BI3 accelerates the synthesis and improves the mass fraction of BAs from ~12% to over 90% at 820°C and 1.5 MPa, a value beyond the promoting effect of only increasing temperature and pressure. Both agents enhance the quality of BAs crystals by reducing the full width at half maximum by up to 10%–20%. I2 agglomerates the grown crystals with twin defects (~50 nm wide), and BI3 improves the crystal anisotropy and element uniformity of BAs crystals with narrow twins (~15 nm wide) and increases the stoichiometry ratio (~0.990) to almost 1. Owing to the boron interstitials from the excessive boron supply, the spacing of layers in {111} increases to 0.286 nm in the presence of I2. Owing to its coordinated effect, BI3 only slightly influences the layer spacing at 0.275 nm, which is close to the theoretical value of 0.276 nm. In the chemical vapor transport, the anisotropic crystals with flat surfaces exhibit single-crystal characteristics under the action of BI3. Different from that of I2, the coordinated effect of BI3 can promote the efficient preparation of high-quality BAs crystal seeds and facilitate the advanced application of BAs.
    • loading
    • Supplementary Information s12613-022-2438-z.docx
    • [1]
      J.S. Kang, M. Li, H. Wu, H. Nguyen, and Y.J. Hu, Experimental observation of high thermal conductivity in boron arsenide, Science, 361(2018), No. 6402, p. 575. doi: 10.1126/science.aat5522
      [2]
      F. Tian and Z.F. Ren, High thermal conductivity in boron arsenide: From prediction to reality, Angew. Chem. Int. Ed. Engl., 58(2019), No. 18, p. 5824. doi: 10.1002/anie.201812112
      [3]
      C. Sealy, Boron arsenide helps devices keep their cool, Nano Today, 22(2018), p. 2. doi: 10.1016/j.nantod.2018.08.005
      [4]
      T.L. Feng, L. Lindsay, and X.L. Ruan, Four-phonon scattering significantly reduces intrinsic thermal conductivity of solids, Phys. Rev. B, 96(2017), No. 16, art. No. 161201. doi: 10.1103/PhysRevB.96.161201
      [5]
      N.H. Protik, J. Carrete, N.A. Katcho, N. Mingo, and D. Broido, Ab initio study of the effect of vacancies on the thermal conductivity of boron arsenide, Phys. Rev. B, 94(2016), No. 4, art. No. 045207. doi: 10.1103/PhysRevB.94.045207
      [6]
      L. Lindsay, D.A. Broido, and T.L. Reinecke, First-principles determination of ultrahigh thermal conductivity of boron arsenide: A competitor for diamond?, Phys. Rev. Lett., 111(2013), No. 2, art. No. 025901. doi: 10.1103/PhysRevLett.111.025901
      [7]
      Q. Zheng, C.A. Polanco, M.H. Du, L.R. Lindsay, M.F. Chi, J.Q. Yan, and B.C. Sales, Antisite pairs suppress the thermal conductivity of BAs, Phys. Rev. Lett., 121(2018), No. 10, art. No. 105901. doi: 10.1103/PhysRevLett.121.105901
      [8]
      J.A. Perri, S. La Placa, and B. Post, New group III–group V compounds: BP and BAs, Acta Crystallogr., 11(1958), No. 4, art. No. 310.
      [9]
      S.J. Wang, S.F. Swingle, H. Ye, F.R.F. Fan, A.H. Cowley, and A.J. Bard, Synthesis and characterization of a p-type boron arsenide photoelectrode, J. Am. Chem. Soc., 134(2012), No. 27, p. 11056. doi: 10.1021/ja301765v
      [10]
      J. Kim, D.A. Evans, D.P. Sellan, O.M. Williams, E. Ou, A.H. Cowley, and L. Shi, Thermal and thermoelectric transport measurements of an individual boron arsenide microstructure, Appl. Phys. Lett., 108(2016), No. 20, art. No. 201905. doi: 10.1063/1.4950970
      [11]
      C.E. Whiteley, Y. Zhang, Y. Gong, S. Bakalova, A. Mayo, J.H. Edgar, and M. Kuball, Semiconducting icosahedral boron arsenide crystal growth for neutron detection, J. Cryst. Growth, 318(2011), No. 1, p. 553. doi: 10.1016/j.jcrysgro.2010.10.057
      [12]
      J.W. Pomeroy, M. Kuball, H. Hubel, N.W.A. Van Uden, D.J. Dunstan, R. Nagarajan, and J.H. Edgar, Raman spectroscopy of B12As2 under high pressure, J. Appl. Phys., 96(2004), No. 1, p. 910. doi: 10.1063/1.1753072
      [13]
      B. Lv, Y.C. Lan, X.Q. Wang, Q. Zhang, Y.J. Hu, A.J. Jacobson, D. Broido, G. Chen, Z.F. Ren, and C.W. Chu, Experimental study of the proposed super-thermal-conductor: BAs, Appl. Phys. Lett., 106(2015), No. 7, art. No. 074105. doi: 10.1063/1.4913441
      [14]
      F. Tian, B. Song, B. Lv, J.Y. Sun, S.Y. Huyan, Q. Wu, J. Mao, Y.Z. Ni, Z.W. Ding, S. Huberman, T.H. Liu, G. Chen, S. Chen, C.W. Chu, and Z.F. Ren, Seeded growth of boron arsenide single crystals with high thermal conductivity, Appl. Phys. Lett., 112(2018), No. 3, art. No. 031903. doi: 10.1063/1.5004200
      [15]
      G.A. Gamage, K. Chen, G. Chen, F. Tian, and Z. Ren, Effect of nucleation sites on the growth and quality of single-crystal boron arsenide, Mater. Today Phys., 11(2019), art. No. 100160. doi: 10.1016/j.mtphys.2019.100160
      [16]
      G.A. Gamage, H.R. Sun, H. Ziyaee, F. Tian, and Z.F. Ren, Effect of boron sources on the growth of boron arsenide single crystals by chemical vapor transport, Appl. Phys. Lett., 115(2019), No. 9, art. No. 092103. doi: 10.1063/1.5111732
      [17]
      H. Sun, K. Chen, G.A. Gamage, H. Ziyaee, F. Wang, Y. Wang, V.G. Hadjiev, F. Tian, G. Chen, and Z. Ren, Boron isotope effect on the thermal conductivity of boron arsenide single crystals, Mater. Today Phys., 11(2019), art. No. 100169. doi: 10.1016/j.mtphys.2019.100169
      [18]
      F. Tian, K. Luo, C.L. Xie, B. Liu, X.W. Liang, L.Y. Wang, G.A. Gamage, H.R. Sun, H. Ziyaee, J.Y. Sun, Z.S. Zhao, B. Xu, G.Y. Gao, X.F. Zhou, and Z.F. Ren, Mechanical properties of boron arsenide single crystal, Appl. Phys. Lett., 114(2019), No. 13, art. No. 131903. doi: 10.1063/1.5093289
      [19]
      S. Li, Q.Y. Zheng, Y.C. Lv, X.Y. Liu, X.Q. Wang, P.Y. Huang, D.G. Cahill, and B. Lv, High thermal conductivity in cubic boron arsenide crystals, Science, 361(2018), No. 6402, p. 579. doi: 10.1126/science.aat8982
      [20]
      J. Xing, E.R. Glaser, B. Song, J.C. Culbertson, J.A. Freitas, R.A. Duncan, K.A. Nelson, G. Chen, and N. Ni, Gas-pressure chemical vapor transport growth of millimeter-sized c-BAs single crystals with moderate thermal conductivity, Appl. Phys. Lett., 112(2018), No. 24, art. No. 241903. doi: 10.1063/1.5034787
      [21]
      J. Xing, X. Chen, Y.Y. Zhou, J.C. Culbertson, J.A. Freitas, E.R. Glaser, J.S. Zhou, L. Shi, and N. Ni, Multimillimeter-sized cubic boron arsenide grown by chemical vapor transport via a tellurium tetraiodide transport agent, Appl. Phys. Lett., 112(2018), No. 26, art. No. 261901. doi: 10.1063/1.5038025
      [22]
      T.L. Chu and A.E. Hyslop, Crystal growth and properties of boron monoarsenide, J. Appl. Phys., 43(1972), No. 2, p. 276. doi: 10.1063/1.1661106
      [23]
      J.L. Lyons, J.B. Varley, E.R. Glaser, J.A. Freitas, J.C. Culbertson, F. Tian, G.A. Gamage, H.R. Sun, H. Ziyaee, and Z.F. Ren, Impurity-derived p-type conductivity in cubic boron arsenide, Appl. Phys. Lett., 113(2018), No. 25, art. No. 251902. doi: 10.1063/1.5058134
      [24]
      H. Detz, D. MacFarland, T. Zederbauer, S. Lancaster, A.M. Andrews, W. Schrenk, and G. Strasser, Growth rate dependence of boron incorporation into BxGa1−xAs layers, J. Cryst. Growth, 477(2017), p. 77. doi: 10.1016/j.jcrysgro.2017.02.043
      [25]
      H. Dumont, D. Rutzinger, C. Vincent, J. Dazord, Y. Monteil, F. Alexandre, and J.L. Gentner, Surface segregation of boron in BxGa1−xAs/GaAs epilayers studied by X-ray photoelectron spectroscopy and atomic force microscopy, Appl. Phys. Lett., 82(2003), No. 12, p. 1830. doi: 10.1063/1.1561164
      [26]
      F. Tian, B. Song, X. Chen, N.K. Ravichandran, Y.C. Lv, K. Chen, S. Sullivan, J. Kim, Y.Y. Zhou, T.H. Liu, M. Goni, Z.W. Ding, J.Y. Sun, G.A.G. Udalamatta Gamage, H.R. Sun, H. Ziyaee, S.Y. Huyan, L.Z. Deng, J.S. Zhou, A.J. Schmidt, S. Chen, C.W. Chu, P.Y. Huang, D. Broido, L. Shi, G. Chen, and Z.F. Ren, Unusual high thermal conductivity in boron arsenide bulk crystals, Science, 361(2018), No. 6402, p. 582. doi: 10.1126/science.aat7932
      [27]
      W. Klement, A. Jayaraman, and G.C. Kennedy, Phase diagrams of arsenic, antimony, and bismuth at pressures up to 70 kbars, Phys. Rev., 131(1963), No. 2, p. 632. doi: 10.1103/PhysRev.131.632
      [28]
      A.F. Armington, Vapor transport of boron, boron phosphide and boron arsenide, J. Cryst. Growth, 1(1967), No. 1, p. 47. doi: 10.1016/0022-0248(67)90007-3
      [29]
      J. Bouix and R. Hillel, Chemical transport of BAs and BP, J. Less-Common Met., 47(1976), p. 67. doi: 10.1016/0022-5088(76)90076-X
      [30]
      V.G. Hadjiev, M.N. Iliev, B. Lv, Z.F. Ren, and C.W. Chu, Anomalous vibrational properties of cubic boron arsenide, Phys. Rev. B, 89(2014), No. 2, art. No. 024308. doi: 10.1103/PhysRevB.89.024308
      [31]
      S.M. Londoño-Restrepo, L.F. Zubieta-Otero, R. Jeronimo-Cruz, M.A. Mondragon, and M.E. Rodriguez-García, Effect of the crystal size on the infrared and Raman spectra of bio hydroxyapatite of human, bovine, and porcine bones, J. Raman Spectrosc., 50(2019), No. 8, p. 1120. doi: 10.1002/jrs.5614
      [32]
      J.J. Wang, D. Chen, Y. Xu, Q.X. Liu, and L.Y. Zhang, Influence of the crystal texture on Raman spectroscopy of the AlN films prepared by pulse laser deposition, J. Spectrosc., 2013(2013), art. No. 103602. doi: 10.1155/2013/103602
      [33]
      X.H. Meng, A. Singh, R. Juneja, Y.Y. Zhang, F. Tian, Z.F. Ren, A.K. Singh, L. Shi, J.F. Lin, and Y.G. Wang, Pressure-dependent behavior of defect-modulated band structure in boron arsenide, Adv. Mater., 32(2020), No. 45, art. No. e2001942. doi: 10.1002/adma.202001942
      [34]
      M. Endo, H. Uchiyama, Y. Ohno, and J. Hirotani, Temperature dependence of Raman shift in defective single-walled carbon nanotubes, Appl. Phys. Express, 15(2022), No. 2, art. No. 025001. doi: 10.35848/1882-0786/ac4678

    Catalog


    • /

      返回文章
      返回