Cite this article as: |
Yan Ma, Isnaldi R. Souza Filho, Xue Zhang, Supriya Nandy, Pere Barriobero-Vila, Guillermo Requena, Dirk Vogel, Michael Rohwerder, Dirk Ponge, Hauke Springer, and Dierk Raabe, Hydrogen-based direct reduction of iron oxide at 700°C: Heterogeneity at pellet and microstructure scales, Int. J. Miner. Metall. Mater.,(2022). https://doi.org/10.1007/s12613-022-2440-5 |
马焱 E-mail: y.ma@mpie.de
Raabe Dierk E-mail: d.raabe@mpie.de
[1] |
D. Raabe, C.C. Tasan and E.A. Olivetti, Strategies for improving the sustainability of structural metals, Nature, 575(2019), No. 7781, p. 64. doi: 10.1038/s41586-019-1702-5
|
[2] |
World Steel Association, World Steel in Figures 2021 [2022-01-24]. https://worldsteel.org/wp-content/uploads/2021-World-Steel-in-Figures.pdf
|
[3] |
M. Flores-Granobles and M. Saeys, Minimizing CO2 emissions with renewable energy: A comparative study of emerging technologies in the steel industry, Energy Environ. Sci., 13(2020), No. 7, p. 1923. doi: 10.1039/D0EE00787K
|
[4] |
F. Patisson and O. Mirgaux, Hydrogen ironmaking: How it works, Metals, 10(2020), No. 7, p. 922. doi: 10.3390/met10070922
|
[5] |
W. Jaimes and S. Maroufi, Sustainability in steelmaking, Curr. Opin. Green Sustainable Chem., 24(2020), p. 42. doi: 10.1016/j.cogsc.2020.01.002
|
[6] |
M. Pei, M. Petäjäniemi, A. Regnell, and O. Wijk, Toward a fossil free future with HYBRIT: Development of iron and steelmaking technology in Sweden and Finland, Metals, 10(2020), No. 7, p. 972. doi: 10.3390/met10070972
|
[7] |
S. Lechtenböhmer, C. Schneider, M. Yetano Roche, and S. Höller, Re-industrialisation and low-carbon economy—Can they go together? Results from stakeholder-based scenarios for energy-intensive industries in the German state of north Rhine Westphalia Energies, 8(2015), No. 10, p. 11404. doi: 10.3390/en81011404
|
[8] |
M. Fischedick, J. Marzinkowski, P. Winzer, and M. Weigel, Techno-economic evaluation of innovative steel production technologies, J. Clean. Prod., 84(2014), p. 563. doi: 10.1016/j.jclepro.2014.05.063
|
[9] |
S.H. Kim, X. Zhang, Y. Ma, et al., Influence of microstructure and atomic-scale chemistry on the direct reduction of iron ore with hydrogen at 700℃, Acta Mater., 212(2021), p. 116933. doi: 10.1016/j.actamat.2021.116933
|
[10] |
I.R. Souza Filho, Y. Ma, M. Kulse, et al., Sustainable steel through hydrogen plasma reduction of iron ore: Process, kinetics, microstructure, chemistry, Acta Mater., 213(2021), p. 116971. doi: 10.1016/j.actamat.2021.116971
|
[11] |
D. Spreitzer and J. Schenk, Reduction of iron oxides with hydrogen—A review, Steel Res. Int., 90(2019), No. 10, p. 1900108. doi: 10.1002/srin.201900108
|
[12] |
Y. Ma, I.R. Souza Filho, Y. Bai, et al., Hierarchical nature of hydrogen-based direct reduction of iron oxides, Scripta Mater., 213(2022), p. 114571. doi: 10.1016/j.scriptamat.2022.114571
|
[13] |
E.T. Turkdogan and J.V. Vinters, Gaseous reduction of iron oxides: Part I. Reduction of hematite in hydrogen, Metall. Mater. Trans. B, 2(1971), No. 11, p. 3175. doi: 10.1007/BF02814970
|
[14] |
M.V.C. Sastri, R.P. Viswanath, and B. Viswanathan, Studies on the reduction of iron oxide with hydrogen, Int. J. Hydrogen Energy, 7(1982), No. 12, p. 951. doi: 10.1016/0360-3199(82)90163-X
|
[15] |
H.Y. Lin, Y.W. Chen, and C. Li, The mechanism of reduction of iron oxide by hydrogen, Thermochim. Acta, 400(2003), No. 1-2, p. 61. doi: 10.1016/S0040-6031(02)00478-1
|
[16] |
M. Moukassi, P. Steinmetz, B. Dupre, and C. Gleitzer, A study of the mechanism of reduction with hydrogen of pure wustite single crystals, Metall. Trans. B, 14(1983), No. 1, p. 125. doi: 10.1007/BF02670879
|
[17] |
M.J. Tiernan, P.A. Barnes, and G.M.B. Parkes, Reduction of iron oxide catalysts: The investigation of kinetic parameters using rate perturbation and linear heating thermoanalytical techniques, J. Phys. Chem. B, 105(2001), No. 1, p. 220. doi: 10.1021/jp003189+
|
[18] |
J. Zieliński, I. Zglinicka, L. Znak, and Z. Kaszkur, Reduction of Fe2O3 with hydrogen, Appl. Catal. A Gen., 381(2010), No. 1-2, p. 191. doi: 10.1016/j.apcata.2010.04.003
|
[19] |
A. Pineau, N. Kanari, and I. Gaballah, Kinetics of reduction of iron oxides by H2: Part I: Low temperature reduction of hematite, Thermochim. Acta, 447(2006), No. 1, p. 89. doi: 10.1016/j.tca.2005.10.004
|
[20] |
A. Pineau, N. Kanari, and I. Gaballah, Kinetics of reduction of iron oxides by H2: Part II: Low temperature reduction of hematite, Thermochim. Acta, 456(2007), No. 2, p. 75. doi: 10.1016/j.tca.2007.01.014
|
[21] |
H.B. Zuo, C. Wang, J.J. Dong, K.X. Jiao, and R.S. Xu, Reduction kinetics of iron oxide pellets with H2 and CO mixtures, Int. J. Miner. Metall. Mater., 22(2015), No. 7, p. 688. doi: 10.1007/s12613-015-1123-x
|
[22] |
Q.T. Tsay, W.H. Ray, and J. Szekely, The modeling of hematite reduction with hydrogen plus carbon monoxide mixtures: Part I. The behavior of single pellets, AIChE J., 22(1976), No. 6, p. 1064. doi: 10.1002/aic.690220617
|
[23] |
E. Kawasaki, J. Sanscrainte, and T.J. Walsh, Kinetics of reduction of iron oxide with carbon monoxide and hydrogen, AIChE J., 8(1962), No. 1, p. 48. doi: 10.1002/aic.690080114
|
[24] |
K. Piotrowski, K. Mondal, H. Lorethova, L. Stonawski, T. Szymański, and T. Wiltowski, Effect of gas composition on the kinetics of iron oxide reduction in a hydrogen production process, Int. J. Hydrogen Energy, 30(2005), No. 15, p. 1543. doi: 10.1016/j.ijhydene.2004.10.013
|
[25] |
K. Piotrowski, K. Mondal, T. Wiltowski, P. Dydo, and G. Rizeg, Topochemical approach of kinetics of the reduction of hematite to wüstite, Chem. Eng. J., 131(2007), No. 1-3, p. 73. doi: 10.1016/j.cej.2006.12.024
|
[26] |
H. Hamadeh, O. Mirgaux, and F. Patisson, Detailed modeling of the direct reduction of iron ore in a shaft furnace, Materials (Basel), 11(2018), No. 10, art. No. 1865.
|
[27] |
A. Bonalde, A. Henriquez, and M. Manrique, Kinetic analysis of the iron oxide reduction using hydrogen-carbon monoxide mixtures as reducing agent, ISIJ Int., 45(2005), No. 9, p. 1255. doi: 10.2355/isijinternational.45.1255
|
[28] |
M. Auinger, D. Vogel, A. Vogel, M. Spiegel, and M. Rohwerder, A novel laboratory set-up for investigating surface and interface reactions during short term annealing cycles at high temperatures, Rev. Sci. Instrum., 84(2013), No. 8, p. 085108. doi: 10.1063/1.4817310
|
[29] |
A.P. Hammersley, FIT2D: A multi-purpose data reduction, analysis and visualization program, J. Appl. Crystallogr., 49(2016), No. 2, p. 646. doi: 10.1107/S1600576716000455
|
[30] |
L. Lutterotti, Total pattern fitting for the combined size-strain-stress-texture determination in thin film diffraction, Nucl. Instrum. Methods Phys. Res., Sect. B, 268(2010), No. 3-4, p. 334. doi: 10.1016/j.nimb.2009.09.053
|
[31] |
A. Ranzani da Costa, D. Wagner, and F. Patisson, Modelling a new, low CO2 emissions, hydrogen steelmaking process, J. Clean. Prod., 46(2013), p. 27. doi: 10.1016/j.jclepro.2012.07.045
|
[32] |
D. Wagner, O. Devisme, F. Patisson, and D. Ablitzer, A laboratory study of the reduction of iron oxides by hydrogen, [in] F. Kongoli and R.G. Reddy, eds., Proceedings of Sohn International Symposium, San Diego, 2006, p. 111.
|
[33] |
W.C. Mao and W.G. Sloof, Reduction kinetics of wüstite scale on pure iron and steel sheets in Ar and H2 gas mixture, Metall. Mater. Trans. B, 48(2017), No. 5, p. 2707. doi: 10.1007/s11663-017-1037-2
|
[34] |
Y. Bai, J. R. Mianroodi, Y. Ma, A.K. da Silva, B. Svendsen, and D. Raabe, Chemo-mechanical phase-field modeling of iron oxide reduction with hydrogen, Acta Mater., 231(2022), p. 117899. doi: 10.1016/j.actamat.2022.117899
|