留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 1
Jan.  2023

图(5)

数据统计

分享

计量
  • 文章访问数:  984
  • HTML全文浏览量:  323
  • PDF下载量:  55
  • 被引次数: 0
Minjie Shi, Hangtian Zhu, Cong Chen, Jintian Jiang, Liping Zhao,  and Chao Yan, Synergistically coupling of graphene quantum dots with Zn-intercalated MnO2 cathode for high-performance aqueous Zn-ion batteries, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 25-32. https://doi.org/10.1007/s12613-022-2441-4
Cite this article as:
Minjie Shi, Hangtian Zhu, Cong Chen, Jintian Jiang, Liping Zhao,  and Chao Yan, Synergistically coupling of graphene quantum dots with Zn-intercalated MnO2 cathode for high-performance aqueous Zn-ion batteries, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 25-32. https://doi.org/10.1007/s12613-022-2441-4
引用本文 PDF XML SpringerLink
研究论文

石墨烯量子点与锌插层氧化锰电极材料的协同耦合用于高性能水性锌离子二次电池

  • 通讯作者:

    施敏杰    E-mail: shiminjie@just.edu.cn

    晏超    E-mail: chaoyan@just.edu.cn

文章亮点

  • (1) 提出了一种新颖的石墨烯量子点与锌插层氧化锰电极材料的耦合机制。
  • (2) 原位拉曼证实了石墨烯量子点与锌插层协同配合对于氧化锰的重要作用。
  • (3) 该复合电极材料展现出高比容量、优异电荷传输能力、以及高循环稳定性。
  • (4) 实现了水系锌离子二次电池的高能量/功率密度与长续航特性。
  • 具有低成本、高安全性、以及高性能可充电水系电池近些年引起了越来越多的关注,其中水系锌离子电池在这方面显示出最有潜力的应用前景。作为水系锌离子电池的正极材料,二氧化锰被研究的最为广泛,但这种正极材料的缺点是电荷转移能力慢和循环性能差。本文提出了一种新颖的石墨烯量子点与锌插层氧化锰电极材料的耦合机制。实验结果表明:石墨烯量子点修饰与锌插层的协同配合提供了丰富的活性位点和导电介质以促进电解液离子扩散与电子电荷传输,确保了电极材料具有优异的电荷传输能力和高电化学可逆性。原位拉曼测试证实了复合电极材料在充放电过程中可逆的相变过程。因此,该电极材料展现出高比容量(403.6 mAh⋅g−1),优异的电化学动力学和良好的结构稳定性。基于这种新型的复合电极材料,我们成功组装了一种高性能的水系锌离子二次电池,该储能器件具有高能量密度(226.8 Wh⋅kg−1), 显著的功率密度(650 W⋅kg−1),以及长期循环性能,揭示了其在低成本、高安全性、高性能能源技术领域中的应用潜能。
  • Research Article

    Synergistically coupling of graphene quantum dots with Zn-intercalated MnO2 cathode for high-performance aqueous Zn-ion batteries

    + Author Affiliations
    • Cost-effective, safe, and highly performing energy storage devices require rechargeable batteries, and among various options, aqueous zinc-ion batteries (ZIBs) have shown high promise in this regard. As a cathode material for the aqueous ZIBs, manganese dioxide (MnO2) has been found to be promising, but certain drawbacks of this cathode material are slow charge-transfer capability and poor cycling performance. Herein, a novel design of graphene quantum dots (GQDs) integrated with Zn-intercalated MnO2 nanosheets is put forward to construct a 3D nanoflower-like GQDs@ZnxMnO2 composite cathode for aqueous ZIBs. The synergistic coupling of GQDs modification with Zn intercalation provides abundant active sites and conductive medium to facilitate the ion/electron transmission, as well as ensure the GQDs@ZnxMnO2 composite cathode with enhanced charge-transfer capability and high electrochemical reversibility, which are elucidated by experiment results and in-situ Raman investigation. These impressive properties endow the GQDs@ZnxMnO2 composite cathode with superior aqueous Zn2+ storage capacity (~403.6 mAh·g−1), excellent electrochemical kinetics, and good structural stability. For actual applications, the fabricated aqueous ZIBs can deliver a substantial energy density (226.8 W·h·kg−1), a remarkable power density (650 W·kg−1), and long-term cycle performance, further stimulating their potential application as efficient electrochemical storage devices for various energy-related fields.
    • loading
    • Supplementary InformationsIJM-12-2021-1134.docx
    • [1]
      F. Wang, O. Borodin, T. Gao, X.L. Fan, W. Sun, F.D. Han, A. Faraone, J.A. Dura, K. Xu, and C.S. Wang, Highly reversible zinc metal anode for aqueous batteries, Nat. Mater., 17(2018), No. 6, p. 543. doi: 10.1038/s41563-018-0063-z
      [2]
      G.J. Liang, F.N. Mo, X.L. Ji, and C.Y. Zhi, Non-metallic charge carriers for aqueous batteries, Nat. Rev. Mater., 6(2021), No. 2, p. 109. doi: 10.1038/s41578-020-00241-4
      [3]
      Y. Zhang, F. Wan, S. Huang, S. Wang, Z.Q. Niu, and J. Chen, A chemically self-charging aqueous zinc-ion battery, Nat. Commun., 11(2020), art. No. 2199. doi: 10.1038/s41467-020-16039-5
      [4]
      J.H. Huang, Z.W. Guo, Y.Y. Ma, D. Bin, Y.G. Wang, and Y.Y. Xia, Recent progress of rechargeable batteries using mild aqueous electrolytes, Small Methods, 3(2019), No. 1, art. No. 1800272. doi: 10.1002/smtd.201800272
      [5]
      X.H. Qin, Y.H. Du, P.C. Zhang, X.Y. Wang, Q.Q. Lu, A.K. Yang, and J.C. Sun, Layered Barium vanadate nanobelts for high-performance aqueous zinc-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1684. doi: 10.1007/s12613-021-2312-4
      [6]
      B.Y. Tang, L.T. Shan, S.Q. Liang, and J. Zhou, Issues and opportunities facing aqueous zinc-ion batteries, Energy Environ. Sci., 12(2019), No. 11, p. 3288. doi: 10.1039/C9EE02526J
      [7]
      X. Gao, H.W. Wu, W.J. Li, Y. Tian, Y. Zhang, H. Wu, L. Yang, G.Q. Zou, H.S. Hou, and X.B. Ji, H+-insertion boosted α-MnO2 for an aqueous Zn-ion battery, Small, 16(2020), No. 5, art. No. 1905842. doi: 10.1002/smll.201905842
      [8]
      B.K. Wu, G.B. Zhang, M.Y. Yan, T.F. Xiong, P. He, L. He, X. Xu, and L.Q. Mai, Graphene scroll-coated α-MnO2 nanowires as high-performance cathode materials for aqueous Zn-ion battery, Small, 14(2018), No. 13, art. No. 1703850. doi: 10.1002/smll.201703850
      [9]
      M. Song, H. Tan, D.L. Chao, and H.J. Fan, Recent advances in Zn-ion batteries, Adv. Funct. Mater., 28(2018), No. 41, art. No. 1802564. doi: 10.1002/adfm.201802564
      [10]
      G.G. Yadav, D. Turney, J.C. Huang, X. Wei, and S. Banerjee, Breaking the 2 V barrier in aqueous zinc chemistry: Creating 2.45 and 2.8 V MnO2–Zn aqueous batteries, ACS Energy Lett., 4(2019), No. 9, p. 2144. doi: 10.1021/acsenergylett.9b01643
      [11]
      D.L. Chao, W.H. Zhou, C. Ye, Q.H. Zhang, Y.G. Chen, L. Gu, K. Davey, and S.Z. Qiao, An electrolytic Zn–MnO2 battery for high-voltage and scalable energy storage, Angew. Chem. Int. Ed., 58(2019), No. 23, p. 7823. doi: 10.1002/anie.201904174
      [12]
      Q.H. Zhao, A.Y. Song, S.X. Ding, R.Z. Qin, Y.H. Cui, S.N. Li, and F. Pan, Preintercalation strategy in manganese oxides for electrochemical energy storage: Review and prospects, Adv. Mater., 32(2020), No. 50, art. No. 2002450. doi: 10.1002/adma.202002450
      [13]
      H.Z. Zhang, Q.Y. Liu, J. Wang, K.F. Chen, D.F. Xue, J. Liu, and X.H. Lu, Boosting the Zn-ion storage capability of birnessite manganese oxide nanoflorets by La3+ intercalation, J. Mater. Chem. A, 7(2019), No. 38, p. 22079. doi: 10.1039/C9TA08418E
      [14]
      Y. Zhao, B. Wang, M.J. Shi, S.B. An, L.P. Zhao, and C. Yan, Mg-intercalation engineering of MnO2 electrode for high-performance aqueous magnesium-ion batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 11, p. 1954. doi: 10.1007/s12613-021-2346-7
      [15]
      W.W. Liu, M. Li, G.P. Jiang, G.R. Li, J.B. Zhu, M.L. Xiao, Y.F. Zhu, R. Gao, A.P. Yu, M. Feng, and Z.W. Chen, Graphene quantum dots-based advanced electrode materials: Design, synthesis and their applications in electrochemical energy storage and electrocatalysis, Adv. Energy Mater., 10(2020), No. 29, art. No. 2001275. doi: 10.1002/aenm.202001275
      [16]
      S. Bak, D. Kim, and H. Lee, Graphene quantum dots and their possible energy applications: A review, Curr. Appl. Phys., 16(2016), No. 9, p. 1192. doi: 10.1016/j.cap.2016.03.026
      [17]
      N. Zahir, P. Magri, W. Luo, J.J. Gaumet, and P. Pierrat, Recent advances on graphene quantum dots for electrochemical energy storage devices, Energy Environ. Mater., 5(2022), No. 1, p. 201. doi: 10.1002/eem2.12167
      [18]
      Q.W. Liu, J.H. Sun, K. Gao, N. Chen, X.T. Sun, D. Ti, C.C. Bai, R.R. Cui, and L.T. Qu, Graphene quantum dots for energy storage and conversion: From fabrication to applications, Mater. Chem. Front., 4(2020), No. 2, p. 421. doi: 10.1039/C9QM00553F
      [19]
      Y. Han, S.Y. Liu, L. Cui, L. Xu, J. Xie, X.K. Xia, W.K. Hao, B. Wang, H. Li, and J. Gao, Graphene-immobilized flower-like Ni3S2 nanoflakes as a stable binder-free anode material for sodium-ion batteries, Int. J. Miner. Metall. Mater., 25(2018), No. 1, p. 88. doi: 10.1007/s12613-018-1550-6
      [20]
      W.Y. Zhang, Y.N. Yang, R.Q. Xia, Y.C. Li, J.Q. Zhao, L. Lin, J.M. Cao, Q.H. Wang, Y. Liu, and H.W. Guo, Graphene-quantum-dots-induced MnO2 with needle-like nanostructure grown on carbonized wood as advanced electrode for supercapacitors, Carbon, 162(2020), p. 114. doi: 10.1016/j.carbon.2020.02.039
      [21]
      H.P. Lv, Y. Yuan, Q.J. Xu, H.M. Liu, Y.G. Wang, and Y.Y. Xia, Carbon quantum dots anchoring MnO2/graphene aerogel exhibits excellent performance as electrode materials for supercapacitor, J. Power Sources, 398(2018), p. 167. doi: 10.1016/j.jpowsour.2018.07.059
      [22]
      G.Z. Li, Z.X. Huang, J.B. Chen, F. Yao, J.P. Liu, O.L. Li, S.H. Sun, and Z.C. Shi, Rechargeable Zn-ion batteries with high power and energy densities: A two-electron reaction pathway in birnessite MnO2 cathode materials, J. Mater. Chem. A, 8(2020), No. 4, p. 1975. doi: 10.1039/C9TA11985J
      [23]
      J. Xu, K.X. Hou, Z.W. Ju, C.J. Ma, W.C. Wang, C. Wang, J.Y. Cao, and Z.D. Chen, Synthesis and electrochemical properties of carbon dots/manganese dioxide (CQDs/MnO2) nanoflowers for supercapacitor applications, J. Electrochem. Soc., 164(2017), No. 2, p. A430. doi: 10.1149/2.1241702jes
      [24]
      V.H. Nguyen, L.T.N. Huynh, T.H. Nguyen, T.P. Vu, M.L.P. le, A. Grag, and V.M. Tran, Promising electrode material using Ni-doped layered manganese dioxide for sodium-ion batteries, J. Appl. Electrochem., 48(2018), No. 7, p. 793. doi: 10.1007/s10800-018-1196-0
      [25]
      G.X. Liu, H.W. Huang, R. Bi, X. Xiao, T.Y. Ma, and L. Zhang, K+ pre-intercalated manganese dioxide with enhanced Zn2+ diffusion for high rate and durable aqueous zinc-ion batteries, J. Mater. Chem. A, 7(2019), No. 36, p. 20806. doi: 10.1039/C9TA08049J
      [26]
      X.L. Zeng, B. Li, R.Q. Liu, X. Li, and T.L. Zhu, Investigation of promotion effect of Cu doped MnO2 catalysts on ketone-type VOCs degradation in a one-stage plasma-catalysis system, Chem. Eng. J., 384(2020), art. No. 123362. doi: 10.1016/j.cej.2019.123362
      [27]
      H.N. Jia, Y.F. Cai, J.H. Lin, H.Y. Liang, J.L. Qi, J. Cao, J.C. Feng, and W.D. Fei, Heterostructural graphene quantum dot/MnO2 nanosheets toward high-potential window electrodes for high-performance supercapacitors, Adv. Sci., 5(2018), No. 5, art. No. 1700887. doi: 10.1002/advs.201700887
      [28]
      J.J. Wang, J.G. Wang, H.Y. Liu, C.G. Wei, and F.Y. Kang, Zinc ion stabilized MnO2 nanospheres for high capacity and long lifespan aqueous zinc-ion batteries, J. Mater. Chem. A, 7(2019), No. 22, p. 13727. doi: 10.1039/C9TA03541A
      [29]
      Q. Chen, J.L. Jin, Z.K. Kou, C. Liao, Z.A. Liu, L. Zhou, J. Wang, and L.Q. Mai, Zn2+ pre-intercalation stabilizes the tunnel structure of MnO2 nanowires and enables zinc-ion hybrid supercapacitor of battery-level energy density, Small, 16(2020), No. 14, art. No. 2000091. doi: 10.1002/smll.202000091
      [30]
      C. Chen, M.J. Shi, Y. Zhao, C. Yang, L.P. Zhao, and C. Yan, Al-intercalated MnO2 cathode with reversible phase transition for aqueous Zn-ion batteries, Chem. Eng. J., 422(2021), art. No. 130375. doi: 10.1016/j.cej.2021.130375
      [31]
      J.Q. Zheng, C.F. Liu, M. Tian, X.X. Jia, E.P. Jahrman, G.T. Seidler, S.Q. Zhang, Y.Y. Liu, Y.F. Zhang, C.G. Meng, and G.Z. Cao, Fast and reversible zinc ion intercalation in Al-ion modified hydrated vanadate, Nano Energy, 70(2020), art. No. 104519. doi: 10.1016/j.nanoen.2020.104519
      [32]
      F. Liu, Z.X. Chen, G.Z. Fang, Z.Q. Wang, Y.S. Cai, B.Y. Tang, J. Zhou, and S.Q. Liang, V2O5 nanospheres with mixed vanadium valences as high electrochemically active aqueous zinc-ion battery cathode, Nano-micro Lett., 11(2019), No. 1, art. No. 25. doi: 10.1007/s40820-019-0256-2
      [33]
      C. Guo, H.M. Liu, J.F. Li, Z.G. Hou, J.W. Liang, J. Zhou, Y.C. Zhu, and Y.T. Qian, Ultrathin δ-MnO2 nanosheets as cathode for aqueous rechargeable zinc ion battery, Electrochim. Acta, 304(2019), p. 370. doi: 10.1016/j.electacta.2019.03.008
      [34]
      L.F. Yang, S. Cheng, J.H. Wang, X. Ji, Y. Jiang, M.H. Yao, P. Wu, M.K. Wang, J. Zhou, and M.L. Liu, Investigation into the origin of high stability of δ-MnO2 pseudo-capacitive electrode using operando Raman spectroscopy, Nano Energy, 30(2016), p. 293. doi: 10.1016/j.nanoen.2016.10.018
      [35]
      Q.N. Zhang, M.D. Levi, Q.Y. Dou, Y.L. Lu, Y.G. Chai, S.L. Lei, H.X. Ji, B. Liu, X.D. Bu, P.J. Ma, and X.B. Yan, The charge storage mechanisms of 2D cation-intercalated manganese oxide in different electrolytes, Adv. Energy Mater., 9(2019), No. 3, art. No. 1802707. doi: 10.1002/aenm.201802707
      [36]
      S. Boyd, K. Ganeshan, W.Y. Tsai, T. Wu, S. Saeed, D.E. Jiang, N. Balke, A.C.T. van Duin, and V. Augustyn, Effects of interlayer confinement and hydration on capacitive charge storage in birnessite, Nat. Mater., 20(2021), No. 12, p. 1689. doi: 10.1038/s41563-021-01066-4
      [37]
      L.Y. Liu, L.J. Su, Y.L. Lu, Q.N. Zhang, L. Zhang, S.L. Lei, S.Q. Shi, M.D. Levi, and X.B. Yan, The origin of electrochemical actuation of MnO2/Ni bilayer film derived by redox pseudocapacitive process, Adv. Funct. Mater., 29(2019), No. 8, art. No. 1806778. doi: 10.1002/adfm.201806778
      [38]
      C. Wang, Y.X. Zeng, X. Xiao, S.J. Wu, G.B. Zhong, K.Q. Xu, Z.F. Wei, W. Su, and X.H. Lu, γ-MnO2 nanorods/graphene composite as efficient cathode for advanced rechargeable aqueous zinc-ion battery, J. Energy Chem., 43(2020), p. 182. doi: 10.1016/j.jechem.2019.08.011
      [39]
      M.J. Shi, H.T. Zhu, C. Yang, J. Xu, and C. Yan, Chemical reduction-induced fabrication of graphene hybrid fibers for energy-dense wire-shaped supercapacitors, Chin. J. Chem. Eng., 47(2022), p. 1. doi: 10.1016/j.cjche.2021.05.045
      [40]
      X.H. Wang, T.S. Mathis, K. Li, Z.F. Lin, L. Vlcek, T. Torita, N.C. Osti, C. Hatter, P. Urbankowski, A. Sarycheva, M. Tyagi, E. Mamontov, P. Simon, and Y. Gogotsi, Influences from solvents on charge storage in titanium carbide MXenes, Nat. Energy, 4(2019), No. 3, p. 241. doi: 10.1038/s41560-019-0339-9
      [41]
      L. Zhang, X.H. Zhang, G.Y. Tian, Q.H. Zhang, M. Knapp, H. Ehrenberg, G. Chen, Z.X. Shen, G.C. Yang, L. Gu, and F. Du, Lithium lanthanum titanate perovskite as an anode for lithium ion batteries, Nat. Commun., 11(2020), art. No. 3490. doi: 10.1038/s41467-020-17233-1
      [42]
      R.Y. Wang, M.J. Shi, L.Y. Li, Y. Zhao, L.P. Zhao, and C. Yan, In-situ investigation and application of cyano-substituted organic electrode for rechargeable aqueous Na-ion batteries, Chem. Eng. J., 451(2023), art. No. 138652. doi: 10.1016/j.cej.2022.138652
      [43]
      R. Ahmad, U.A. Khan, N. Iqbal, and T. Noor, Zeolitic imidazolate framework (ZIF)-derived porous carbon materials for supercapacitors: An overview, RSC Adv., 10(2020), No. 71, p. 43733. doi: 10.1039/D0RA08560J

    Catalog


    • /

      返回文章
      返回