Cite this article as:

Lifan Wang, Jingyue Wang, Leiying Wang, Mingjun Zhang, Rui Wang, and Chun Zhan, A critical review on nickel-based cathodes in rechargeable batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp.925-941. https://dx.doi.org/10.1007/s12613-022-2446-z
Lifan Wang, Jingyue Wang, Leiying Wang, Mingjun Zhang, Rui Wang, and Chun Zhan, A critical review on nickel-based cathodes in rechargeable batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp.925-941. https://dx.doi.org/10.1007/s12613-022-2446-z
引用本文 PDF XML SpringerLink

镍基氧化物二次电池正极材料综述

摘要: 镍是一种重要的第一过渡系金属元素。镍基正极材料在二次电池中的应用已经有超过100年的历史:从最早的镍基碱性电池(例如镍铬、镍铁、镍锌、镍氢电池等)中的氢氧化镍电极,到现在主流的锂离子电池中的高镍三元正极材料。镍基碱性电池早在1900年被发现,到20世纪90年代中期发展成熟的镍-金属氢电池已经大规模应用于日本丰田普锐斯电动汽车上。然而,几乎在同一时间日本索尼公司首次实现了锂离子电池的商业化,并很快代替镍氢电池成为移动电子设备的主要二次电源。由于早期的锂离子电池主要采用钴酸锂作为正极材料,因此镍基材料在二次电源中的应用短暂的减少。然而近年来,以镍为核心组分的高镍三元材料以其高能量密度的优势成为纯电动汽车动力电池的主要正极材料,镍重新成为二次电池科研和产业的关注中心。镍基正极材料的核心优势在于镍离子具有良好的电化学性能,同时镍在地球中储量相对比较重复因此成本较低。因此,本文主要总结镍基正极材料在二次电池中的重要作用。首先,介绍第一过渡系金属元素镍的基本的物理化学性质,以此理解镍离子作为二次电池正极材料氧化还原中心的优势;接下来,介绍镍基碱性电池中氢氧化镍电极的结构、反应机理以及性能提升方法;随后,我们介绍锂离子电池中的镍基层状氧化物正极材料,主要集中介绍镍酸锂和高镍三元正极材料的结构和主要问题和挑战等,重点讨论高镍三元材料中镍元素影响高镍正极材料电化学性能和热稳定性的机制和解决方式。本文将传统的碱性电池与当今主流的锂离子电池相结合,旨在提供新的思路将具有百年历史的镍氢电池氢氧化镍正极材料结构设计方法应用于高镍三元正极材料的设计和开发中,从而进一步开发具有高能量密度、长寿命的镍基二次电池。

 

A critical review on nickel-based cathodes in rechargeable batteries

Abstract: The 3d transition-metal nickel (Ni)-based cathodes have long been widely used in rechargeable batteries for over 100 years, from Ni-based alkaline rechargeable batteries, such as nickel–cadmium (Ni–Cd) and nickel–metal hydride (Ni–MH) batteries, to the Ni-rich cathode featured in lithium-ion batteries (LIBs). Ni-based alkaline batteries were first invented in the 1900s, and the well-developed Ni–MH batteries were used on a large scale in Toyota Prius vehicles in the mid-1990s. Around the same time, however, Sony Corporation commercialized the first LIBs in camcorders. After temporally fading as LiCoO2 dominated the cathode in LIBs, nickel oxide-based cathodes eventually found their way back to the mainstreaming battery industry. The uniqueness of Ni in batteries is that it helps to deliver high energy density and great storage capacity at a low cost. This review mainly provides a comprehensive overview of the key role of Ni-based cathodes in rechargeable batteries. After presenting the physical and chemical properties of the 3d transition-metal Ni, which make it an optimal cationic redox center in the cathode of batteries, we introduce the structure, reaction mechanism, and modification of nickel hydroxide electrode in Ni–Cd and Ni–MH rechargeable batteries. We then move on to the Ni-based layered oxide cathode in LIBs, with a focus on the structure, issues, and challenges of layered oxides, LiNiO2, and LiNi1−xyCoxMnyO2. The role of Ni in the electrochemical performance and thermal stability of the Ni-rich cathode is highlighted. By bridging the “old” Ni-based batteries and the “modern” Ni-rich cathode in the LIBs, this review is committed to providing insights into the Ni-based electrochemistry and material design, which have been under research and development for over 100 years. This overview would shed new light on the development of advanced Ni-containing batteries with high energy density and long cycle life.

 

/

返回文章
返回