留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 5
Apr.  2022

图(12)

数据统计

分享

计量
  • 文章访问数:  5157
  • HTML全文浏览量:  1512
  • PDF下载量:  498
  • 被引次数: 0
Lifan Wang, Jingyue Wang, Leiying Wang, Mingjun Zhang, Rui Wang, and Chun Zhan, A critical review on nickel-based cathodes in rechargeable batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp. 925-941. https://doi.org/10.1007/s12613-022-2446-z
Cite this article as:
Lifan Wang, Jingyue Wang, Leiying Wang, Mingjun Zhang, Rui Wang, and Chun Zhan, A critical review on nickel-based cathodes in rechargeable batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp. 925-941. https://doi.org/10.1007/s12613-022-2446-z
引用本文 PDF XML SpringerLink
特约综述

镍基氧化物二次电池正极材料综述

  • 通讯作者:

    詹纯    E-mail: zhanchun@ustb.edu.cn

文章亮点

  • (1) 介绍了镍基碱性电池体系中氢氧化镍正极材料的结构、工作原理和改性研究进展。
  • (2) 介绍了锂离子电池中层状镍氧化物正极材料,特别是高镍三元正极材料的研究进展。
  • (3) 展望了将传统镍氢电池正极材料结构设计方法应用于高镍三元正极材料的设计和开发
  • 镍是一种重要的第一过渡系金属元素。镍基正极材料在二次电池中的应用已经有超过100年的历史:从最早的镍基碱性电池(例如镍铬、镍铁、镍锌、镍氢电池等)中的氢氧化镍电极,到现在主流的锂离子电池中的高镍三元正极材料。镍基碱性电池早在1900年被发现,到20世纪90年代中期发展成熟的镍-金属氢电池已经大规模应用于日本丰田普锐斯电动汽车上。然而,几乎在同一时间日本索尼公司首次实现了锂离子电池的商业化,并很快代替镍氢电池成为移动电子设备的主要二次电源。由于早期的锂离子电池主要采用钴酸锂作为正极材料,因此镍基材料在二次电源中的应用短暂的减少。然而近年来,以镍为核心组分的高镍三元材料以其高能量密度的优势成为纯电动汽车动力电池的主要正极材料,镍重新成为二次电池科研和产业的关注中心。镍基正极材料的核心优势在于镍离子具有良好的电化学性能,同时镍在地球中储量相对比较重复因此成本较低。因此,本文主要总结镍基正极材料在二次电池中的重要作用。首先,介绍第一过渡系金属元素镍的基本的物理化学性质,以此理解镍离子作为二次电池正极材料氧化还原中心的优势;接下来,介绍镍基碱性电池中氢氧化镍电极的结构、反应机理以及性能提升方法;随后,我们介绍锂离子电池中的镍基层状氧化物正极材料,主要集中介绍镍酸锂和高镍三元正极材料的结构和主要问题和挑战等,重点讨论高镍三元材料中镍元素影响高镍正极材料电化学性能和热稳定性的机制和解决方式。本文将传统的碱性电池与当今主流的锂离子电池相结合,旨在提供新的思路将具有百年历史的镍氢电池氢氧化镍正极材料结构设计方法应用于高镍三元正极材料的设计和开发中,从而进一步开发具有高能量密度、长寿命的镍基二次电池。
  • Invited Review

    A critical review on nickel-based cathodes in rechargeable batteries

    + Author Affiliations
    • The 3d transition-metal nickel (Ni)-based cathodes have long been widely used in rechargeable batteries for over 100 years, from Ni-based alkaline rechargeable batteries, such as nickel–cadmium (Ni–Cd) and nickel–metal hydride (Ni–MH) batteries, to the Ni-rich cathode featured in lithium-ion batteries (LIBs). Ni-based alkaline batteries were first invented in the 1900s, and the well-developed Ni–MH batteries were used on a large scale in Toyota Prius vehicles in the mid-1990s. Around the same time, however, Sony Corporation commercialized the first LIBs in camcorders. After temporally fading as LiCoO2 dominated the cathode in LIBs, nickel oxide-based cathodes eventually found their way back to the mainstreaming battery industry. The uniqueness of Ni in batteries is that it helps to deliver high energy density and great storage capacity at a low cost. This review mainly provides a comprehensive overview of the key role of Ni-based cathodes in rechargeable batteries. After presenting the physical and chemical properties of the 3d transition-metal Ni, which make it an optimal cationic redox center in the cathode of batteries, we introduce the structure, reaction mechanism, and modification of nickel hydroxide electrode in Ni–Cd and Ni–MH rechargeable batteries. We then move on to the Ni-based layered oxide cathode in LIBs, with a focus on the structure, issues, and challenges of layered oxides, LiNiO2, and LiNi1−xyCoxMnyO2. The role of Ni in the electrochemical performance and thermal stability of the Ni-rich cathode is highlighted. By bridging the “old” Ni-based batteries and the “modern” Ni-rich cathode in the LIBs, this review is committed to providing insights into the Ni-based electrochemistry and material design, which have been under research and development for over 100 years. This overview would shed new light on the development of advanced Ni-containing batteries with high energy density and long cycle life.
    • loading
    • [1]
      G. Halpert, Past developments and the future of nickel electrode cell technology, J. Power Sources, 12(1984), No. 3-4, p. 177. doi: 10.1016/0378-7753(84)80018-X
      [2]
      C. Chakkaravarthy, P. Periasamy, S. Jegannathan, and K.I. Vasu, The nickel/iron battery, J. Power Sources, 35(1991), No. 1, p. 21. doi: 10.1016/0378-7753(91)80002-F
      [3]
      Technical Marketing Staff of Gates Energy Products Inc., Rechargeable Batteries Applications Handbook, Newnes, 1998. p. 283
      [4]
      Z. Melhem, Electricity Transmission, Distribution and Storage systems, Woodhead Publishing, Cambrige, 2013.
      [5]
      R.J. Brodd, Nickel-based battery systems, [in] Batteries for Sustainability, Springer, New York, 2013, p. 423.
      [6]
      M. Armand and J.M. Tarascon, Building better batteries, Nature, 451(2008), No. 7179, p. 652. doi: 10.1038/451652a
      [7]
      M.S. Whittingham, Lithium batteries and cathode materials, Chem. Rev., 104(2004), No. 10, p. 4271. doi: 10.1021/cr020731c
      [8]
      J.R. Dahn, U.V. Sacken, and C.A. Michal, Structure and electrochemistry of LiyNiO2 and a new Li2NiO2 phase with the Ni(OH)2 structure, Solid State Ionics, 44(1990), No. 1-2, p. 87. doi: 10.1016/0167-2738(90)90049-W
      [9]
      J.R. Dahn, U.v. Sacken, M.W. Juzkow, and H. Al-Janaby, Rechargeable LiNiO2/carbon cells, J. Electrochem. Soc., 138(1991), No. 8, p. 2207. doi: 10.1149/1.2085950
      [10]
      T. Ohzuku, A. Ueda, M. Nagayama, Y. Iwakoshi, and H. Komori, Comparative study of LiCoO2, LiNi12Co12O2 and LiNiO2 for 4 volt secondary lithium cells, Electrochim. Acta, 38(1993), No. 9, p. 1159. doi: 10.1016/0013-4686(93)80046-3
      [11]
      T. Ohzuku, A. Ueda, and M. Nagayama, Electrochemistry and structural chemistry of LiNiO2 ( $ {\rm{R}}\bar 3{\rm{m}} $) for 4 volt secondary lithium cells, J. Electrochem. Soc., 140(1993), No. 7, p. 1862. doi: 10.1149/1.2220730
      [12]
      T. Ohzuku and Y. Makimura, Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2for lithium-ion batteries, Chem. Lett., 30(2001), No. 7, p. 642. doi: 10.1246/cl.2001.642
      [13]
      Z.L. Liu, A.S. Yu, and J.Y. Lee, Synthesis and characterization of LiNi1−xyCoxMnyO2 as the cathode materials of secondary lithium batteries, J. Power Sources, 81-82(1999), p. 416. doi: 10.1016/S0378-7753(99)00221-9
      [14]
      W.D. Li, E.M. Erickson, and A. Manthiram, High-nickel layered oxide cathodes for lithium-based automotive batteries, Nat. Energy, 5(2020), No. 1, p. 26. doi: 10.1038/s41560-019-0513-0
      [15]
      M. Bianchini, M. Roca-Ayats, P. Hartmann, T. Brezesinski, and J. Janek, There and back again—The journey of LiNiO2 as a cathode active material, Angew. Chem. Int. Ed., 58(2019), No. 31, p. 10434. doi: 10.1002/anie.201812472
      [16]
      Nickel Institute, About Nickel and Its Applications, Nickel Institute [2022]. https://nickelinstitute.org/about-nickel-and-its-applications/#04-first-use-nickel
      [17]
      Y.Z. Zhu, X.F. He, and Y.F. Mo, First principles study on electrochemical and chemical stability of solid electrolyte-electrode interfaces in all-solid-state Li-ion batteries, J. Mater. Chem. A, 4(2016), No. 9, p. 3253. doi: 10.1039/C5TA08574H
      [18]
      X.W. Zhan, M.M. Li, J.M. Weller, V.L. Sprenkle, and G.S. Li, Recent progress in cathode materials for sodium-metal halide batteries, Materials, 14(2021), No. 12, art. No. 3260.
      [19]
      C. Housecroft and A.G. Sharpe, Inorganic Chemistry, 4th Ed., Pearson Education Limited, Harlow, 2012.
      [20]
      C.P. Liang, R.C. Longo, F.T. Kong, C.X. Zhang, Y.F. Nie, Y.P. Zheng, J.S. Kim, S. Jeon, S. Choi, and K. Cho, Obstacles toward unity efficiency of LiNi1−2xCoxMnxO2 (x = 0~1/3) (NCM) cathode materials: Insights from ab initio calculations, J. Power Sources, 340(2017), p. 217. doi: 10.1016/j.jpowsour.2016.11.056
      [21]
      P. Kalyani and N. Kalaiselvi, Various aspects of LiNiO2 chemistry: A review, Sci. Technol. Adv. Mater., 6(2005), No. 6, p. 689. doi: 10.1016/j.stam.2005.06.001
      [22]
      Z.Q. Deng and A. Manthiram, Influence of cationic substitutions on the oxygen loss and reversible capacity of lithium-rich layered oxide cathodes, J. Phys. Chem. C, 115(2011), No. 14, p. 7097. doi: 10.1021/jp200375d
      [23]
      J.M. Skowronski and M. Osinska, The determination of chemical precipitation conditions of nickel hydroxide from solutions after leaching spent Ni–Cd batteries, Przem. Chem., 88(2009), No. 7, p. 826.
      [24]
      L.L. Li, L. Chen, Y.H. Wen, T.F. Xiong, H. Xu, W.F. Zhang, G.P. Cao, Y.S. Yang, L.Q. Mai, and H. Zhang, Phenazine anodes for ultralongcycle-life aqueous rechargeable batteries, J. Mater. Chem. A, 8(2020), No. 48, p. 26013. doi: 10.1039/D0TA08600B
      [25]
      A.K. Shukla, S. Venugopalan, and B. Hariprakash, Nickel-based rechargeable batteries, J. Power Sources, 100(2001), No. 1-2, p. 125. doi: 10.1016/S0378-7753(01)00890-4
      [26]
      H. Bode, K. Dehmelt, and J. Witte, Zur kenntnis der nickelhydroxidelektrode—I.Über das nickel(II)-hydroxidhydrat, Electrochim. Acta, 11(1966), No. 8, p. 1079. doi: 10.1016/0013-4686(66)80045-2
      [27]
      N. Sac-Epée, M.R. Palacín, B. Beaudoin, A. Delahaye-Vidal, T. Jamin, Y. Chabre, and J.M. Tarascon, On the origin of the second low-voltage plateau in secondary alkaline batteries with nickel hydroxide positive electrodes, J. Electrochem. Soc., 144(1997), No. 11, p. 3896. doi: 10.1149/1.1838108
      [28]
      B. Liu, X.R. Liu, X.Y. Fan, J. Ding, W.B. Hu, and C. Zhong, 120 Years of nickel-based cathodes for alkaline batteries, J. Alloys Compd., 834(2020), art. No. 155185. doi: 10.1016/j.jallcom.2020.155185
      [29]
      O. Diaz-Morales, D. Ferrus-Suspedra, and M.T.M. Koper, The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation, Chem. Sci., 7(2016), No. 4, p. 2639. doi: 10.1039/C5SC04486C
      [30]
      C.C. Yang, Synthesis and characterization of active materials of Ni(OH)2 powders, Int. J. Hydrog. Energy, 27(2002), No. 10, p. 1071. doi: 10.1016/S0360-3199(02)00013-7
      [31]
      A.N. Mansour, C.A. Melendres, M. Pankuch, and R.A. Brizzolara, X-ray absorption fine structure spectra and the oxidation state of nickel in some of its oxycompounds, J. Electrochem. Soc., 141(1994), No. 6, p. L69. doi: 10.1149/1.2054990
      [32]
      G.T. Cheek and W.E. O’Grady, Redox behavior of the nickel oxide electrode system: Quartz crystal microbalance studies, J. Electroanal. Chem., 421(1997), No. 1-2, p. 173. doi: 10.1016/S0022-0728(96)04821-8
      [33]
      M. Oshitani, H. Yufu, K. Takashima, S. Tsuji, and Y. Matsumaru, Development of a pasted nickel electrode with high active material utilization, J. Electrochem. Soc., 136(1989), No. 6, p. 1590. doi: 10.1149/1.2096974
      [34]
      S. Anders, A. Anders, I. Brown, F. Kong, and F. McLarnon, Surface modification of nickel battery electrodes by cobalt plasma immersion ion implantation and deposition, Surf. Coat. Technol., 85(1996), No. 1-2, p. 75. doi: 10.1016/0257-8972(96)02878-2
      [35]
      X.M. He, W.H. Pu, H.W. Cheng, C.Y. Jiang, and C.R. Wan, Granulation of nano-scale Ni(OH)2 cathode materials for high power Ni–MH batteries, Energy Convers. Manag., 47(2006), No. 13-14, p. 1879. doi: 10.1016/j.enconman.2005.10.004
      [36]
      F.Y. Cheng, J. Chen, and P.W. Shen, Y(OH)3-coated Ni(OH)2 tube as the positive-electrode materials of alkaline rechargeable batteries, J. Power Sources, 150(2005), p. 255. doi: 10.1016/j.jpowsour.2005.02.073
      [37]
      P.V. Kamath, M. Dixit, L. Indira, A.K. Shukla, V.G. Kumar, and N. Munichandraiah, Stabilized α-Ni (OH)2 as electrode material for alkaline secondary cells, J. Electrochem. Soc., 141(1994), No. 11, p. 2956. doi: 10.1149/1.2059264
      [38]
      M. Gong, Y.G. Li, H.B. Zhang, B. Zhang, W. Zhou, J. Feng, H.L. Wang, Y.Y. Liang, Z.J. Fan, J. Liu, and H.J. Dai, Ultrafast high-capacity NiZn battery with NiAlCo-layered double hydroxide, Energy Environ. Sci., 7(2014), No. 6, p. 2025. doi: 10.1039/c4ee00317a
      [39]
      S.W. Kimmel, B.J. Hopkins, C.N. Chervin, N.L. Skeele, J.S. Ko, R.H. DeBlock, J.W. Long, J.F. Parker, B.M. Hudak, R.M. Stroud, D.R. Rolison, and C.P. Rhodes, Capacity and phase stability of metal-substituted α-Ni(OH)2 nanosheets in aqueous Ni–Zn batteries, Mater. Adv., 2(2021), No. 9, p. 3060. doi: 10.1039/D1MA00080B
      [40]
      S.Z. Chen, M. Mao, X. Liu, S.Y. Hong, Z.G. Lu, S.B. Sang, K.Y. Liu, and H.T. Liu, A high-rate cathode material hybridized by in-site grown Ni–Fe layered double hydroxides and carbon black nanoparticles, J. Mater. Chem. A, 4(2016), No. 13, p. 4877. doi: 10.1039/C6TA00842A
      [41]
      R.S. Jayashree and P. Vishnu Kamath, Layered double hydroxides of Ni with Cr and Mn as candidate electrode materials for alkaline secondary cells, J. Power Sources, 107(2002), No. 1, p. 120. doi: 10.1016/S0378-7753(01)00994-6
      [42]
      Y.W. Li, J.H. Yao, C.J. Liu, W.M. Zhao, W.X. Deng, and S.K. Zhong, Effect of interlayer anions on the electrochemical performance of Al-substituted α-type nickel hydroxide electrodes, Int. J. Hydrog. Energy, 35(2010), No. 6, p. 2539. doi: 10.1016/j.ijhydene.2010.01.015
      [43]
      L.X. Lei, M. Hu, X.R. Gao, and Y.M. Sun, The effect of the interlayer anions on the electrochemical performance of layered double hydroxide electrode materials, Electrochim. Acta, 54(2008), No. 2, p. 671. doi: 10.1016/j.electacta.2008.07.004
      [44]
      J.B. Goodenough and Y. Kim, Challenges for rechargeable Li batteries, Chem. Mater., 22(2010), No. 3, p. 587. doi: 10.1021/cm901452z
      [45]
      L.D. Dyer, B.S.B. Jr, and G.P. Smith, Alkali metal-nickel oxides of the type MNiO2, J. Am. Chem. Soc., 76(1954), No. 6, p. 1499. doi: 10.1021/ja01635a012
      [46]
      R.C. Qian, Y.L. Liu, T. Cheng, P.P. Li, R.M. Chen, Y.C. Lyu, and B.K. Guo, Enhanced surface chemical and structural stability of Ni-rich cathode materials by synchronous lithium-ion conductor coating for lithium-ion batteries, ACS Appl. Mater. Interfaces, 12(2020), No. 12, p. 13813. doi: 10.1021/acsami.9b21264
      [47]
      C. Hernández-Fontes and H. Pfeiffer, Unraveling the CO and CO2 reactivity on Li2MnO3: Sorption and catalytic analyses, Chem. Eng. J., 428(2022), art. No. 131998. doi: 10.1016/j.cej.2021.131998
      [48]
      A.K. Padhi, K.S. Nanjundaswamy, and J.B. Goodenough, Phospho-olivines as positive-electrode materials for rechargeable lithium batteries, J. Electrochem. Soc., 144(1997), No. 4, p. 1188. doi: 10.1149/1.1837571
      [49]
      W. Liu, P. Oh, X.E. Liu, M.J. Lee, W. Cho, S. Chae, Y. Kim, and J. Cho, Nickel-rich layered lithium transition-metal oxide for high-energy lithium-ion batteries, Angew. Chem. Int. Ed., 54(2015), No. 15, p. 4440. doi: 10.1002/anie.201409262
      [50]
      N. Kalaiselvi, P. Periasamy, R. Thirunakaran, B. Ramesh Babu, T. Prem Kumar, N.G. Renganathan, M. Raghavan, and N. Muniyandi, Iron doped lithium cobalt oxides as lithium intercalating cathode materials, Ionics, 7(2001), No. 4-6, p. 451. doi: 10.1007/BF02373583
      [51]
      A. Manthiram, B.H. Song, and W.D. Li, A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries, Energy Storage Mater., 6(2017), p. 125. doi: 10.1016/j.ensm.2016.10.007
      [52]
      J.B. Goodenough, D.G. Wickham, and W.J. Croft, Some magnetic and crystallographic properties of the system Li+xNi++1−2xni+++xO, J. Phys. Chem. Solids, 5(1958), No. 1-2, p. 107. doi: 10.1016/0022-3697(58)90136-7
      [53]
      A.R. Armstrong and P.G. Bruce, Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries, Nature, 381(1996), No. 6582, p. 499. doi: 10.1038/381499a0
      [54]
      D. Aurbach, Electrode-solution interactions in Li-ion batteries: A short summary and new insights, J. Power Sources, 119-121(2003), p. 497. doi: 10.1016/S0378-7753(03)00273-8
      [55]
      Y. Kim, W.M. Seong, and A. Manthiram, Cobalt-free, high-nickel layered oxide cathodes for lithium-ion batteries: Progress, challenges, and perspectives, Energy Storage Mater., 34(2021), p. 250. doi: 10.1016/j.ensm.2020.09.020
      [56]
      B.L. Ellis, K.T. Lee, and L.F. Nazar, Positive electrode materials for Li-ion and Li-batteries, Chem. Mater., 22(2010), No. 3, p. 691. doi: 10.1021/cm902696j
      [57]
      C. Li, H.P. Zhang, L.J. Fu, H. Liu, Y.P. Wu, E. Rahm, R. Holze, and H.Q. Wu, Cathode materials modified by surface coating for lithium ion batteries, Electrochim. Acta, 51(2006), No. 19, p. 3872. doi: 10.1016/j.electacta.2005.11.015
      [58]
      C.C. Chang, J.Y. Kim, and P.N. Kumta, Implications of reaction mechanism and kinetics on the synthesis of stoichiometric LiNiO2, J. Electrochem. Soc., 149(2002), No. 3, art. No. A331. doi: 10.1149/1.1436082
      [59]
      C.C. Chang and P.N. Kumta, Mechanochemical synthesis of LiNiO2, Mater. Sci. Eng. B, 116(2005), No. 3, p. 341. doi: 10.1016/j.mseb.2004.05.042
      [60]
      Z.L. Chen, H.M. Zou, X.P. Zhu, J. Zou, and J.F. Cao, First-principle investigation of Jahn–Teller distortion and topological analysis of chemical bonds in LiNiO2, J. Solid State Chem., 184(2011), No. 7, p. 1784. doi: 10.1016/j.jssc.2011.05.024
      [61]
      M. Bonda, M. Holzapfel, S. de Brion, C. Darie, T. Fehér, P.J. Baker, T. Lancaster, S.J. Blundell, and F.L. Pratt, Publisher’s Note: Effect of magnesium doping on the orbital and magnetic order in LiNiO2, Phys. Rev. B, 78(2008), No. 10, art. No. 109903. doi: 10.1103/PhysRevB.78.109903
      [62]
      E. Cho, S.W. Seo, and K. Min, Theoretical prediction of surface stability and morphology of LiNiO2 cathode for Li ion batteries, ACS Appl. Mater. Interfaces, 9(2017), No. 38, p. 33257. doi: 10.1021/acsami.7b08563
      [63]
      D.W. Jun, C.S. Yoon, U.H. Kim, and Y.K. Sun, High-energy density core-shell structured LiNi0.95Co0.025Mn0.025 O2 cathode for lithium-ion batteries, Chem. Mater., 29(2017), No. 12, p. 5048. doi: 10.1021/acs.chemmater.7b01425
      [64]
      K. Hirota, Y. Nakazawa, and M. Ishikawa, Magnetic properties of the S = 1/2 antiferromagnetic triangular lattice LiNiO2, J. Phys.: Condens. Matter, 3(1991), No. 25, p. 4721. doi: 10.1088/0953-8984/3/25/017
      [65]
      C.D.W. Jones, E. Rossen, and J.R. Dahn, Structure and electrochemistry of LixCryCo1−yO2, Solid State Ionics, 68(1994), No. 1-2, p. 65. doi: 10.1016/0167-2738(94)90235-6
      [66]
      C.S. Yoon, D.W. Jun, S.T. Myung, and Y.K. Sun, Structural stability of LiNiO2 cycled above 4.2 V, ACS Energy Lett., 2(2017), No. 5, p. 1150. doi: 10.1021/acsenergylett.7b00304
      [67]
      H. Kawaji, T. Oka, T. Tojo, T. Atake, A. Hirano, and R. Kanno, Low-temperature heat capacity of layer structure lithium nickel oxide, Solid State Ionics, 152-153(2002), p. 195. doi: 10.1016/S0167-2738(02)00300-4
      [68]
      D. G Kellerman, Magnetic properties of complex oxides LiMO2 (M = Sc–Ni) with different types of cationic ordering, Russ. Chem. Rev., 70(2001), No. 9, p. 777. doi: 10.1070/RC2001v070n09ABEH000670
      [69]
      C. Delmas, M. Ménétrier, L. Croguennec, I. Saadoune, A. Rougier, C. Pouillerie, G. Prado, M. Grüne, and L. Fournès, An overview of the Li(Ni,M)O2 systems: Syntheses, structures and properties, Electrochim. Acta, 45(1999), No. 1-2, p. 243. doi: 10.1016/S0013-4686(99)00208-X
      [70]
      H.J. Xu, W.D. Xiao, Z. Wang, J.H. Hu, and G.S. Shao, Self-consistent assessment of Li+ ion cathodes: Theory vs. experiments, J. Energy Chem., 59(2021), p. 229. doi: 10.1016/j.jechem.2020.11.008
      [71]
      C.D. Liu, G.Q. Cao, Z.H. Wu, J.H. Hu, H.Y. Wang, and G.S. Shao, Surficial structure retention mechanism for LiNi0.8Co0.15Al0.05O2 in a full gradient cathode, ACS Appl. Mater. Interfaces, 11(2019), No. 35, p. 31991. doi: 10.1021/acsami.9b10160
      [72]
      S.F. Li, G.N. Qian, X.M. He, X.J. Huang, S.J. Lee, Z.S. Jiang, Y. Yang, W.N. Wang, D.C. Meng, C. Yu, J.S. Lee, Y.S. Chu, Z.F. Ma, P. Pianetta, J.S. Qiu, L.S. Li, K.J. Zhao, and Y.J. Liu, Thermal-healing of lattice defects for high-energy single-crystalline battery cathodes, Nat. Commun., 13(2022), No. 1, art. No. 704. doi: 10.1038/s41467-022-28325-5
      [73]
      H.B. Lee, T.D. Hoang, Y.S. Byeon, H. Jung, J. Moon, and M.S. Park, Surface stabilization of Ni-rich layered cathode materials via surface engineering with LiTaO3 for lithium-ion batteries, ACS Appl. Mater. Interfaces, 14(2022), No. 2, p. 2731. doi: 10.1021/acsami.1c19443
      [74]
      S.Y. Yin, W.T. Deng, J. Chen, X. Gao, G.Q. Zou, H.S. Hou, and X.B. Ji, Fundamental and solutions of microcrack in Ni-rich layered oxide cathode materials of lithium-ion batteries, Nano Energy, 83(2021), art. No. 105854. doi: 10.1016/j.nanoen.2021.105854
      [75]
      H.H. Sun, U.H. Kim, J.H. Park, S.W. Park, D.H. Seo, A. Heller, C.B. Mullins, C.S. Yoon, and Y.K. Sun, Transition metal-doped Ni-rich layered cathode materials for durable Li-ion batteries, Nat. Commun., 12(2021), art. No. 6552. doi: 10.1038/s41467-021-26815-6
      [76]
      Z.K. Zhao, H.L. Xie, Z.Y. Wen, L. Liu, B.R. Wu, S. Chen, D.B. Mu, and C.X. Xie, Tuning Li3PO4 modification on the electrochemical performance of nickel-rich LiNi0.6Co0.2Mn0.2O2, Int. J. Miner. Metall. Mater., 28(2021), No. 9, p. 1488. doi: 10.1007/s12613-020-2232-8
      [77]
      H.Y. Wang, X. Cheng, X.F. Li, J.M. Pan, and J.H. Hu, Coupling effect of the conductivities of Li ions and electrons by introducing LLTO@C fibers in the LiNi0.8Co0.15Al0.05O2 cathode, Int. J. Miner. Metall. Mater., 28(2021), No. 2, p. 305. doi: 10.1007/s12613-020-2145-6
      [78]
      J.K. Ngala, N.A. Chernova, M.M. Ma, M. Mamak, P.Y. Zavalij, and M.S. Whittingham, The synthesis, characterization and electrochemical behavior of the layered LiNi0.4Mn0.4Co0.2O2 compound, J. Mater. Chem., 14(2004), No. 2, p. 214. doi: 10.1039/b309834f
      [79]
      K.S. Lee, S.T. Myung, K. Amine, H. Yashiro, and Y.K. Sun, Structural and electrochemical properties of layered Li[Ni1−2xCoxMnx]O2 (x = 0.1–0.3) positive electrode materials for Li-ion batteries, J. Electrochem. Soc., 154(2007), No. 10, p. A971. doi: 10.1149/1.2769831
      [80]
      C.H. Chen, J. Liu, M.E. Stoll, G. Henriksen, D.R. Vissers, and K. Amine, Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries, J. Power Sources, 128(2004), No. 2, p. 278. doi: 10.1016/j.jpowsour.2003.10.009
      [81]
      K. Kang, Y.S. Meng, J. Breger, C.P. Grey, and G. Ceder, Electrodes with high power and high capacity for rechargeable lithium batteries, Science, 311(2006), No. 5763, p. 977. doi: 10.1126/science.1122152
      [82]
      J. Xu, F. Lin, M.M. Doeff, and W. Tong, A review of Ni-based layered oxides for rechargeable Li-ion batteries, J. Mater. Chem. A, 5(2017), No. 3, p. 874. doi: 10.1039/C6TA07991A
      [83]
      M. Guilmard, L. Croguennec, D. Denux, and C. Delmas, Thermal stability of lithium nickel oxide derivatives. Part I. LixNi1.02O2 and LixNi0.89Al0.16O2 (x = 0.50 and 0.30), Chem. Mater., 15(2003), No. 23, p. 4476. doi: 10.1021/cm030059f
      [84]
      A. Chakraborty, S. Kunnikuruvan, S. Kumar, B. Markovsky, D. Aurbach, M. Dixit, and D.T. Major, Layered cathode materials for lithium-ion batteries: Review of computational studies on LiNi1–xyCoxMnyO2 and LiNi1–xyCoxAlyO2, Chem. Mater., 32(2020), No. 3, p. 915. doi: 10.1021/acs.chemmater.9b04066
      [85]
      M. Guilmard, L. Croguennec, and C. Delmas, Thermal stability of lithium nickel oxide derivatives. Part II. LixNi0.70Co0.15Al0.15O2 and LixNi0.90Mn0.10O2 (x = 0.50 and 0.30). Comparison with LixNi1.02O2 and LixNi0.89Al0.16O2, Chem. Mater., 15(2003), No. 23, p. 4484. doi: 10.1021/cm030340u
      [86]
      N.M. Trease, I.D. Seymour, M.D. Radin, H.D. Liu, H. Liu, S. Hy, N. Chernova, P. Parikh, A. Devaraj, K.M. Wiaderek, P.J. Chupas, K.W. Chapman, M.S. Whittingham, Y.S. Meng, A.Van der Van, and C.P. Grey, Identifying the distribution of Al3+ in LiNi0.8Co0.15Al0.05O2, Chem. Mater., 28(2016), No. 22, p. 8170. doi: 10.1021/acs.chemmater.6b02797
      [87]
      N. Leifer, O. Srur-Lavi, I. Matlahov, B. Markovsky, D. Aurbach, and G. Goobes, LiNi0.8Co0.15Al0.05O2 cathode material: New insights via 7Li and 27Al magic-angle spinning NMR spectroscopy, Chem. Mater., 28(2016), No. 21, p. 7594. doi: 10.1021/acs.chemmater.6b01412
      [88]
      T. Ohzuku, T. Yanagawa, M. Kouguchi, and A. Ueda, Innovative insertion material of LiAl1/4Ni3/4O2 (R-m) for lithium-ion (shuttlecock) batteries, J. Power Sources, 68(1997), No. 1, p. 131. doi: 10.1016/S0378-7753(97)02516-0
      [89]
      K. Edström, T. Gustafsson, and J.O. Thomas, The cathode-electrolyte interface in the Li-ion battery, Electrochim. Acta, 50(2004), No. 2-3, p. 397. doi: 10.1016/j.electacta.2004.03.049
      [90]
      Y. Huang, F.M. Jin, F.J. Chen, and L. Chen, Improved cycle stability and high-rate capability of Li3VO4-coated Li[Ni0.5Co0.2Mn0.3]O2 cathode material under different voltages, J. Power Sources, 256(2014), p. 1. doi: 10.1016/j.jpowsour.2014.01.003
      [91]
      X. Guo, S. Greenbaum, F. Ronci, and B. Scrosati, X-ray diffraction and 7Li nuclear magnetic resonance studies of iron- and cobalt-substituted LiNiO2 prepared from inorganic transition metal nitrates, Solid State Ionics, 168(2004), No. 1-2, p. 37. doi: 10.1016/j.ssi.2004.02.006
      [92]
      X.K. Huang, A. Attia, H.J. Yue, D.P. Lv, and Y. Yang, Preparation and electrochemical properties of Co3O4-coated layered manganese oxide by a novel coating method, J. Solid State Electrochem., 13(2009), No. 5, p. 697. doi: 10.1007/s10008-008-0584-5
      [93]
      M. Guilmard, C. Pouillerie, L. Croguennec, and C. Delmas, Structural and electrochemical properties of LiNi0.70Co0.15Al0.15O2, Solid State Ionics, 160(2003), No. 1-2, p. 39. doi: 10.1016/S0167-2738(03)00106-1
      [94]
      S. Hwang, W. Chang, S.M. Kim, D. Su, D.H. Kim, J.Y. Lee, K.Y. Chung, and E.A. Stach, Investigation of changes in the surface structure of LixNi0.8Co0.15Al0.05O2 cathode materials induced by the initial charge, Chem. Mater., 26(2014), No. 2, p. 1084. doi: 10.1021/cm403332s
      [95]
      S. Hwang, S.M. Kim, S.M. Bak, B.W. Cho, K.Y. Chung, J.Y. Lee, W. Chang, and E.A. Stach, Investigating local degradation and thermal stability of charged nickel-based cathode materials through real-time electron microscopy, ACS Appl. Mater. Interfaces, 6(2014), No. 17, p. 15140. doi: 10.1021/am503278f
      [96]
      Z.L. Tan, Y.J. Li, X.M. Xi, J.C. Yang, Y.L. Xu, Y.K. Xiong, S. Wang, S.W. Liu, and J.C. Zheng, Lattice engineering to alleviate microcrack of LiNi0.9Co0.05Mn0.05O2 cathode for optimization their Li+ storage functionalities, Electrochim. Acta, 401(2022), art. No. 139482. doi: 10.1016/j.electacta.2021.139482
      [97]
      P. He, H.J. Yu, D. Li, and H.S. Zhou, Layered lithium transition metal oxide cathodes towards high energy lithium-ion batteries, J. Mater. Chem., 22(2012), No. 9, p. 3680. doi: 10.1039/c2jm14305d
      [98]
      Y.K. Sun, D.J. Lee, Y.J. Lee, Z.H. Chen, and S.T. Myung, Cobalt-free nickel rich layered oxide cathodes for lithium-ion batteries, ACS Appl. Mater. Interfaces, 5(2013), No. 21, p. 11434. doi: 10.1021/am403684z
      [99]
      H.Y. Li, M. Cormier, N. Zhang, J. Inglis, J. Li, and J.R. Dahn, Is cobalt needed in Ni-rich positive electrode materials for lithium ion batteries? J. Electrochem. Soc., 166(2019), No. 4, p. A429. doi: 10.1149/2.1381902jes
      [100]
      A. Rougier, P. Gravereau, and C. Delmas, Optimization of the composition of the Li1–zNi1+zO2 electrode materials: Structural, magnetic, and electrochemical studies, J. Electrochem. Soc., 143(1996), No. 4, p. 1168. doi: 10.1149/1.1836614
      [101]
      C.F. Zhang, J.J. Wan, Y.X. Li, S.Y. Zheng, K. Zhou, D.H. Wang, D.F. Wang, C.Y. Hong, Z.L. Gong, and Y. Yang, Restraining the polarization increase of Ni-rich and low-Co cathodes upon cycling by Al-doping, J. Mater. Chem. A, 8(2020), No. 14, p. 6893. doi: 10.1039/D0TA00260G
      [102]
      C.Y. Hong, Q.Y. Leng, J.P. Zhu, S.Y. Zheng, H.J. He, Y.X. Li, R. Liu, J.J. Wan, and Y. Yang, Revealing the correlation between structural evolution and Li+ diffusion kinetics of nickel-rich cathode materials in Li-ion batteries, J. Mater. Chem. A, 8(2020), No. 17, p. 8540. doi: 10.1039/D0TA00555J
      [103]
      J. Li, J. Harlow, N. Stakheiko, N. Zhang, J. Paulsen, and J. Dahn, Dependence of cell failure on cut-off voltage ranges and observation of kinetic hindrance in LiNi0.8Co0.15Al0.05O2, J. Electrochem. Soc., 165(2018), No. 11, p. A2682. doi: 10.1149/2.0491811jes
      [104]
      J.R. Croy, B.R. Long, and M. Balasubramanian, A path toward cobalt-free lithium-ion cathodes, J. Power Sources, 440(2019), art. No. 227113. doi: 10.1016/j.jpowsour.2019.227113
      [105]
      M.M.E. Cormier, N. Zhang, A. Liu, H.Y. Li, J. Inglis, and J.R. Dahn, Impact of dopants (Al,Mg,Mn,Co) on the reactivity of LixNiO2 with the electrolyte of Li-ion batteries, J. Electrochem. Soc., 166(2019), No. 13, p. A2826. doi: 10.1149/2.0491913jes
      [106]
      W.D. Li, S. Lee, and A. Manthiram, High-nickel NMA: A cobalt-free alternative to NMC and NCA cathodes for lithium-ion batteries, Adv. Mater., 32(2020), No. 33, art. No. 2002718. doi: 10.1002/adma.202002718
      [107]
      X.Q. Yang, J. McBreen, W.S. Yoon, and C.P. Grey, Crystal structure changes of LiMn0.5Ni0.5O2 cathode materials during charge and discharge studied by synchrotron based in situ XRD, Electrochem. Commun., 4(2002), No. 8, p. 649. doi: 10.1016/S1388-2481(02)00406-X
      [108]
      J.X. Zheng, T.C. Liu, Z.X. Hu, Y. Wei, X.H. Song, Y. Ren, W.D. Wang, M.M. Rao, Y. Lin, Z.H. Chen, J. Lu, C.M. Wang, K. Amine, and F. Pan, Tuning of thermal stability in layered Li(NixMnyCoz)O2, J. Am. Chem. Soc., 138(2016), No. 40, p. 13326. doi: 10.1021/jacs.6b07771
      [109]
      A. Manthiram, J.C. Knight, S.T. Myung, S.M. Oh, and Y.K. Sun, Nickel-rich and lithium-rich layered oxide cathodes: Progress and perspectives, Adv. Energy Mater., 6(2016), No. 1, art. No. 1501010. doi: 10.1002/aenm.201501010
      [110]
      J.H. Wang, Y. Yamada, K. Sodeyama, C.H. Chiang, Y. Tateyama, and A. Yamada, Superconcentrated electrolytes for a high-voltage lithium-ion battery, Nat. Commun., 7(2016), art. No. 12032. doi: 10.1038/ncomms12032
      [111]
      J.N. Reimers, W. Li, and J.R. Dahn, Short-range cation ordering inLixNi2–xO2, Phys. Rev. B, 47(1993), No. 14, p. 8486. doi: 10.1103/PhysRevB.47.8486
      [112]
      K.W. Nam, S.M. Bak, E.Y. Hu, X.Q. Yu, Y. Zhou, X.J. Wang, L.J. Wu, Y.M. Zhu, K.Y. Chung, and X.Q. Yang, Combining in situ synchrotron X-ray diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium-ion batteries, Adv. Funct. Mater., 23(2013), No. 8, p. 1047. doi: 10.1002/adfm.201200693
      [113]
      J. Li, L.E. Downie, L. Ma, W.D. Qiu, and J.R. Dahn, Study of the failure mechanisms of LiNi0.8Mn0.1Co0.1O2 Cathode material for lithium ion batteries, J. Electrochem. Soc., 162(2015), No. 7, p. A1401. doi: 10.1149/2.1011507jes
      [114]
      M. Li and J. Lu, Cobalt in lithium-ion batteries, Science, 367(2020), No. 6481, p. 979. doi: 10.1126/science.aba9168
      [115]
      M.J. Tang, J. Yang, N.T. Chen, S.C. Zhu, X. Wang, T. Wang, C.C. Zhang, and Y.Y. Xia, Overall structural modification of a layered Ni-rich cathode for enhanced cycling stability and rate capability at high voltage, J. Mater. Chem. A, 7(2019), No. 11, p. 6080. doi: 10.1039/C8TA12494A
      [116]
      H. Kim, M.G. Kim, H.Y. Jeong, H. Nam, and J. Cho, A new coating method for alleviating surface degradation of LiNi0.6Co0.2Mn0.2O2 cathode material: Nanoscale surface treatment of primary particles, Nano Lett., 15(2015), No. 3, p. 2111. doi: 10.1021/acs.nanolett.5b00045
      [117]
      Y. Shin and A. Manthiram, Microstrain and capacity fade in spinel manganese oxides, Electrochem. Solid-State Lett., 5(2002), No. 3, art. No. A55. doi: 10.1149/1.1450063
      [118]
      Y.K. Sun, S.T. Myung, M.H. Kim, J. Prakash, and K. Amine, Synthesis and characterization of Li [(Ni0.8Co0.1Mn0.1)0.8(Ni0.5Mn0.5)0.2]O2 with the microscale core-shell structure as the positive electrode material for lithium batteries, J. Am. Chem. Soc., 127(2005), No. 38, p. 13411. doi: 10.1021/ja053675g
      [119]
      L.R. Brandt, J.J. Marie, T. Moxham, D.P. Förstermann, E. Salvati, C. Besnard, C. Papadaki, Z.F. Wang, P.G. Bruce, and A.M. Korsunsky, Synchrotron X-ray quantitative evaluation of transient deformation and damage phenomena in a single nickel-rich cathode particle, Energy Environ. Sci., 13(2020), No. 10, p. 3556. doi: 10.1039/D0EE02290J
      [120]
      L.F. Wang, R. Wang, J.Y. Wang, R. Xu, X.D. Wang, and C. Zhan, Nanowelding to improve the chemomechanical stability of the Ni-rich layered cathode materials, ACS Appl. Mater. Interfaces, 13(2021), No. 7, p. 8324. doi: 10.1021/acsami.0c20100
      [121]
      S.M. Bak, E.Y. Hu, Y.N. Zhou, X.Q. Yu, S.D. Senanayake, S.J. Cho, K.B. Kim, K.Y. Chung, X.Q. Yang, and K.W. Nam, Structural changes and thermal stability of chargedLiNixMnyCozO2 cathode materials studied by combined in situ time-resolved XRD and mass spectroscopy, ACS Appl. Mater. Interfaces, 6(2014), No. 24, p. 22594. doi: 10.1021/am506712c
      [122]
      H.J. Noh, S. Youn, C.S. Yoon, and Y.K. Sun, Comparison of the structural and electrochemical properties of layeredLi[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries, J. Power Sources, 233(2013), p. 121. doi: 10.1016/j.jpowsour.2013.01.063
      [123]
      X. Shen, X.Q. Zhang, F. Ding, J.Q. Huang, R. Xu, X. Chen, C. Yan, F.Y. Su, C.M. Chen, X.J. Liu, Q. Zhang, Advanced electrode materials in lithium batteries: Retrospect and prospect, Energy Mater. Adv., 2021(2021), art. No. 1205324. doi: 10.34133/2021/1205324

    Catalog


    • /

      返回文章
      返回