Cite this article as:

Xuan Liu, Gaoyang Liu, Jilai Xue, Xindong Wang, and Qingfeng Li, Hydrogen as a carrier of renewable energies toward carbon neutrality: State-of-the-art and challenging issues, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp.1073-1089. https://dx.doi.org/10.1007/s12613-022-2449-9
Xuan Liu, Gaoyang Liu, Jilai Xue, Xindong Wang, and Qingfeng Li, Hydrogen as a carrier of renewable energies toward carbon neutrality: State-of-the-art and challenging issues, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp.1073-1089. https://dx.doi.org/10.1007/s12613-022-2449-9
引用本文 PDF XML SpringerLink

氢作为可再生能源的载体助力碳中和:进展与挑战

摘要: 通过氢链技术进行能量存储和转换是未来可再生能源大规模利用的公认愿景,也是弥合现有技术差距以实现碳中和战略的关键。本文回顾了可再生能源框架下的氢链技术,包括水电解、储氢和燃料电池技术,对当前的技术发展进行了总结并提出了展望。水电解制氢作为一种能量存储技术,可以扩展达到兆瓦级别,并且其动态运行模式足以匹配可再生能源发电的间歇性。水电解制氢的关键材料问题包括用于碱性电解槽的坚固隔膜、质子交换膜水电解槽析氧和析氢催化剂和电解槽结构材料,还包括对固体氧化物电解槽长期耐用性验证。先进高压储氢罐(高达70 MPa)的研发对未来汽车应用市场具有巨大吸引力,但仍面临关键材料与技术瓶颈。燃料电池是理想的氢燃料利用装置。质子交换膜氢氧燃料电池和固体氧化物燃料电池分别成为汽车和固定应用领域的主导技术。目前,这两种技术都处于准商业化的门槛,具有经过验证的技术准备和环保优点;然而,它们仍然面临诸如匮乏的氢链基础设施、长期耐用性以及高成本等技术瓶颈的限制。

 

Hydrogen as a carrier of renewable energies toward carbon neutrality: State-of-the-art and challenging issues

Abstract: Energy storage and conversion via a hydrogen chain is a recognized vision of future energy systems based on renewables and, therefore, a key to bridging the technological gap toward a net-zero CO2 emission society. This paper reviews the hydrogen technological chain in the framework of renewables, including water electrolysis, hydrogen storage, and fuel cell technologies. Water electrolysis is an energy conversion technology that can be scalable in megawatts and operational in a dynamic mode to match the intermittent generation of renewable power. Material concerns include a robust diaphragm for alkaline cells, catalysts and construction materials for proton exchange membrane (PEM) cells, and validation of the long-term durability for solid oxide cells. Hydrogen storage via compressed gas up to 70 MPa is optional for automobile applications. Fuel cells favor hydrogen fuel because of its superfast electrode kinetics. PEM fuel cells and solid oxide fuel cells are dominating technologies for automobile and stationary applications, respectively. Both technologies are at the threshold of their commercial markets with verified technical readiness and environmental merits; however, they still face restraints such as unavailable hydrogen fueling infrastructure, long-term durability, and costs to compete with the analog power technologies already on the market.

 

/

返回文章
返回