Cite this article as:

Yue Liu, Shaobo Huang, Shanlong Peng, Heng Zhang, Lifan Wang, and Xindong Wang, Novel Au nanoparticles-inlaid titanium paper for PEM water electrolysis with enhanced interfacial electrical conductivity, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp.1090-1098. https://dx.doi.org/10.1007/s12613-022-2452-1
Yue Liu, Shaobo Huang, Shanlong Peng, Heng Zhang, Lifan Wang, and Xindong Wang, Novel Au nanoparticles-inlaid titanium paper for PEM water electrolysis with enhanced interfacial electrical conductivity, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp.1090-1098. https://dx.doi.org/10.1007/s12613-022-2452-1
引用本文 PDF XML SpringerLink

PEM纯水电解制氢中镶金纳米粒子钛纸扩散层的高导电性研究

摘要: 质子交换膜水电解(PEM WE)技术具有制取氢气纯度高、可控范围大、工作响应快等优点,可充分适用于风能、太阳能等可再生能源的间歇性特点,在未来的制氢行业有广泛的应用前景。目前,钛具有优异的稳定性使其成为一种先进的结构材料,用于PEM水电解槽中的阳极扩散层组件。然而,钛钝化层的存在也对表面接触电阻有负面影响,因为钝化层本身是非/半导体,过度的钝化程度会导致PEM WE运行过程中较高的表面接触电阻和能量损失。因此,改善钛基扩散层的导电性和界面稳定性是一个紧迫的问题。在这项工作中,我们采用聚多巴胺(PDA)原位还原工艺在钛纸扩散层表面制备了一种亲水、耐蚀的导电复合涂层。研究了PDA薄膜在钛纸表面的沉积时间、还原金纳米颗粒的浓度、微观形貌、组成,以及在模拟PEM水电解环境下涂层的耐蚀性、稳定性和导电性。结果表明,通过调控聚多巴胺薄膜的沉积时间和氯金酸的浓度,在钛纸面膜原位沉积金纳米颗粒的最佳反应条件为沉积PDA时间为48 h,氯金酸pH为3。涂层样品界面接触电阻可达0.5 mΩ·cm2,在一定程度上降低电解槽的欧姆损耗。在质子交换膜电解水阳极酸性介质富氧高极化电位下(1.7 V vs. RHE),腐蚀电流密度为0.001 µA·cm−2。这些优异的性能与其表面结构有关: 钛纸表面亲水性的PDA薄膜,确保了混合涂层中既不存在微孔也不存在针孔,提高了耐蚀性;金纳米粒子改善了导电性,以达到理想的界面接触电阻,并进一步增强了耐腐蚀性。由于该方法操作简单,在提高PEM WE工艺效率方面具有巨大的潜力。

 

Novel Au nanoparticles-inlaid titanium paper for PEM water electrolysis with enhanced interfacial electrical conductivity

Abstract: Proton-exchange membrane water electrolysis (PEM WE) is a particularly promising technology for renewable hydrogen production. However, the excessive passivation of the gas diffusion layer (GDL) will seriously affect the high surface-contact resistance and result in energy losses. Thus, a mechanism for improving the conductivity and interface stability of the GDL is an urgent issue. In this work, we have prepared a hydrophilic and corrosion resistant conductive composite protective coating. The polydopamine (PDA) film on the Ti surface, which was obtained via the solution oxidation method, ensured that neither micropores nor pinholes existed in the final hybrid coatings. In-situ reduced gold nanoparticles (AuNPs) improved the conductivity to achieve the desired interfacial contact resistance and further enhanced the corrosion resistance. The surface composition of the treated samples was investigated using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Fourier transform infrared spectroscopy (FTIR). The results indicated that the optimized reaction conditions included a pH value of 3 of HAuCl4 solution with PDA deposition (48 h) on papers and revealed the lowest contact resistance (0.5 mΩ·cm2) and corrosion resistance (0.001 µA·cm−2) in a 0.5 M H2SO4 + 2 ppm F solution (1.7 V vs. RHE) among all the modified specimens, where RHE represents reversible hydrogen electrode. These findings indicated that the Au–PDA coating is very appropriate for the modification of Ti GDLs in PEM WE systems.

 

/

返回文章
返回