留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 5
Apr.  2022

图(4)

数据统计

分享

计量
  • 文章访问数:  2231
  • HTML全文浏览量:  496
  • PDF下载量:  84
  • 被引次数: 0
Lingyun Xiong, Hao Fu, Weiwei Han, Manxiang Wang, Jingwei Li, Woochul Yang,  and Guicheng Liu, Robust ZnS interphase for stable Zn metal anode of high-performance aqueous secondary batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp. 1053-1060. https://doi.org/10.1007/s12613-022-2454-z
Cite this article as:
Lingyun Xiong, Hao Fu, Weiwei Han, Manxiang Wang, Jingwei Li, Woochul Yang,  and Guicheng Liu, Robust ZnS interphase for stable Zn metal anode of high-performance aqueous secondary batteries, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp. 1053-1060. https://doi.org/10.1007/s12613-022-2454-z
引用本文 PDF XML SpringerLink
研究论文

水系锌金属二次电池中稳固的ZnS界面相研究

  • 通讯作者:

    Woochul Yang    E-mail: wyang@dongguk.edu

    刘桂成    E-mail: log67@163.com

文章亮点

  • (1) 在锌金属表面构建稳定的ZnS界面层并研究其保护机理。
  • (2) 采用低温的液相氧化和气相硫化的方法制备厚度可控的ZnS界面层。
  • (3) 优化不同厚度的ZnS界面层对锌金属电极电化学性能的影响。
  • 水系锌金属电池因其具有较高的理论容量、较低的成本和较好的安全性等优点,目前被认为是最有前景的水系二次电池之一。但锌金属在充放电过程中遭受到严重的析氢反应、自腐蚀和枝晶生长等缺点,会严重降低电池使用寿命和充放电效率。本文旨在通过低温液相氧化和低温气相硫化的方法在锌金属表面构筑ZnS钝化层,并在合成过程中通过控制氧化时间进一步合成ZnS厚度可控的Zn@ZnS电极。与传统高温气相合成相比(温度>350°C),本文采用低温(160°C)温和的合成方法不仅能实现ZnS厚度可控,并且还能有效避免高温下锌金属的老化。其次,得益于ZnS钝化层的化学稳定性,所制备的Zn@ZnS电极化学稳定性得到明显提升,表现出良好的防腐性能和抑制析氢反应性能。同时,ZnS层中的Zn–S键存在电荷分布不平衡现象,在电镀和剥离过程中能够诱导锌金属均匀生长,从而抑制循环过程中枝晶的生成,进而大大提高电极使用寿命。再此,我们对ZnS厚度进行优化,发现厚度为0.75 μm 的Zn@ZnS-2电极表现出最优的诱导锌金属沉积性能,并具有最佳的综合电化学性能。最后,Zn@ZnS对称电池在0.5 mA⋅cm−2的电流密度下可循环300次,相应过电位为42 mV。Zn@ZnS//Ti半电池在5 mA⋅cm−2的电流密度下可循环200次,相应的过电位为78 mV。在Zn|| NH4V4O10全电池中展现出优异的倍率性能。
  • Research Article

    Robust ZnS interphase for stable Zn metal anode of high-performance aqueous secondary batteries

    + Author Affiliations
    • Although Zn metal is an ideal anode candidate for aqueous batteries owing to its high theoretical capacity, lower cost, and safety, its service life and efficiency are damaged by severe hydrogen evolution reaction, self-corrosion, and dendrite growth. Herein, a thickness-controlled ZnS passivation layer was fabricated on the Zn metal surface to obtain Zn@ZnS electrode through oxidation–orientation sulfuration by the liquid- and vapor-phase hydrothermal processes. Benefiting from the chemical inertness of the ZnS interphase, the as-prepared Zn@ZnS electrode presents an excellent anti-corrosion and undesirable hydrogen evolution reaction. Meanwhile, the thickness-optimized ZnS layer with an unbalanced charge distribution represses dendrite growth by guiding Zn plating/stripping, leading to long service life. Consequently, the Zn@ZnS presented 300 cycles in the symmetric cells with a 42 mV overpotential, 200 cycles in half cells with a 78 mV overpotential, and superb rate performance in Zn||NH4V4O10 full cells.
    • loading
    • Supplementary Informations12613-022-2454-z.docx
    • [1]
      X.H. Qin, Y.H. Du, P.C. Zhang, X.Y. Wang, Q.Q. Lu, A.K. Yang, and J.C. Sun, Layered barium vanadate nanobelts for high-performance aqueous zinc-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1684. doi: 10.1007/s12613-021-2312-4
      [2]
      J.Y. Kim, G.C. Liu, G.Y. Shim, H. Kim, and J.K. Lee, Functionalized Zn@ZnO hexagonal pyramid array for dendrite-free and ultrastable zinc metal anodes, Adv. Funct. Mater., 30(2020), No. 36, art. No. 2004210. doi: 10.1002/adfm.202004210
      [3]
      M.J. Wu, G.X. Zhang, H.M. Yang, X.H. Liu, M. Dubois, M.A. Gauthier, and S.H. Sun, Aqueous Zn-based rechargeable batteries: Recent progress and future perspectives, InfoMat, (2021). DOI: 10.1002/inf2.12265
      [4]
      Y.L. Heng, Z.Y. Gu, J.Z. Guo, and X.L. Wu, Research progresses on vanadium-based cathode materials for aqueous zinc-ion batteries, Acta Phys. Chim. Sin., 37(2020), No. 3, p. art. No. 2005013. doi: 10.3866/PKU.WHXB202005013
      [5]
      R.E.A. Ardhi, G.C. Liu, and J.K. Lee, Metal–semiconductor ohmic and Schottky contact interfaces for stable Li-metal electrodes, ACS Energy Lett., (2021), p. 1432. doi: 10.1021/acsenergylett.1c00150
      [6]
      H.C. Tao, L.Y. Xiong, S.C. Zhu, X.L. Yang, and L.L. Zhang, Flexible binder-free reduced graphene oxide wrapped Si/carbon fibers paper anode for high-performance lithium ion batteries, Int. J. Hydrogen Energy, 41(2016), No. 46, p. 21268. doi: 10.1016/j.ijhydene.2016.07.220
      [7]
      H.C. Tao, S.C. Zhu, L.Y. Xiong, L.L. Zhang, and X.L. Yang, Reduced graphene oxide wrapped Si/C assembled on 3D N-doped carbon foam as binder-free anode for enhanced lithium storage, ChemistrySelect, 2(2017), No. 9, p. 2832. doi: 10.1002/slct.201700366
      [8]
      H.C. Tao, L.Y. Xiong, S.L. Du, Y.Q. Zhang, X.L. Yang, and L.L. Zhang, Interwoven N and P dual-doped hollow carbon fibers/graphitic carbon nitride: An ultrahigh capacity and rate anode for Li and Na ion batteries, Carbon, 122(2017), p. 54. doi: 10.1016/j.carbon.2017.06.040
      [9]
      F.H. Chen, Y.W. Wu, H.H. Zhang, Z.T. Long, X.X. Lin, M.Z. Chen, Q. Chen, Y.F. Luo, S.L. Chou, and R.H. Zeng, The modulation of the discharge plateau of benzoquinone for sodium-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1675. doi: 10.1007/s12613-021-2261-y
      [10]
      H. Fu, Z.W. Xu, R.Z. Li, W.W. Guan, K. Yao, J.F. Huang, J. Yang, and X.T. Shen, Network carbon with macropores from apple pomace for stable and high areal capacity of sodium storage, ACS Sustainable Chem. Eng., 6(2018), No. 11, p. 14751. doi: 10.1021/acssuschemeng.8b03297
      [11]
      Y. Han, S.Y. Liu, L. Cui, L. Xu, J. Xie, X.K. Xia, W.K. Hao, B. Wang, H. Li, and J. Gao, Graphene-immobilized flower-like Ni3S2 nanoflakes as a stable binder-free anode material for sodium-ion batteries, Int. J. Miner. Metall. Mater., 25(2018), No. 1, p. 88. doi: 10.1007/s12613-018-1550-6
      [12]
      M. Yang, Q.L. Ning, C.Y. Fan, and X.L. Wu, Large-scale Ni-MOF derived Ni3S2 nanocrystals embedded in N-doped porous carbon nanoparticles for high-rate Na+ storage, Chin. Chem. Lett., 32(2021), No. 2, p. 895. doi: 10.1016/j.cclet.2020.07.014
      [13]
      L. Zhu, X.X. Yang, Y.H. Xiang, P. Kong, and X.W. Wu, Neurons-system-like structured SnS2/CNTs composite for high-performance sodium-ion battery anode, Rare Met., 40(2021), No. 6, p. 1383. doi: 10.1007/s12598-020-01555-6
      [14]
      D.H. Liu, W.H. Li, Y.P. Zheng, Z. Cui, X. Yan, D.S. Liu, J.W. Wang, Y. Zhang, H.Y. Lü, F.Y. Bai, J.Z. Guo, and X.L. Wu, In situ encapsulating α-MnS into N, S-codoped nanotube-like carbon as advanced anode material: α → β phase transition promoted cycling stability and superior Li/Na-storage performance in half/full cells, Adv. Mater., 30(2018), No. 21, art. No. 1706317. doi: 10.1002/adma.201706317
      [15]
      W.W. Han, G.C. Liu, W. Seo, H. Lee, H.Q. Chu, and W. Yang, Nitrogen-doped chain-like carbon nanospheres with tunable interlayer distance for superior pseudocapacitance-dominated zinc- and potassium-ion storage, Carbon, 184(2021), p. 534. doi: 10.1016/j.carbon.2021.08.060
      [16]
      L. Chen, J.L. Bao, X. Dong, D.G. Truhlar, Y. Wang, C. Wang, and Y. Xia, Aqueous Mg-ion battery based on polyimide anode and Prussian blue cathode, ACS Energy Lett., 2(2017), No. 5, p. 1115. doi: 10.1021/acsenergylett.7b00040
      [17]
      X.T. Zhang, J.X. Li, D.Y. Liu, M.K. Liu, T.S. Zhou, K.W. Qi, L. Shi, Y.C. Zhu, and Y.T. Qian, Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer, Energy Environ. Sci., 14(2021), No. 5, p. 3120. doi: 10.1039/D0EE03898A
      [18]
      J. Cui, X.Y. Liu, Y.H. Xie, K. Wu, Y.Q. Wang, Y.Y. Liu, J.J. Zhang, J. Yi, and Y.Y. Xia, Improved electrochemical reversibility of Zn plating/stripping: A promising approach to suppress water-induced issues through the formation of H-bonding, Mater. Today Energy, 18(2020), art. No. 100563. doi: 10.1016/j.mtener.2020.100563
      [19]
      R.Z. Qin, Y.T. Wang, M.Z. Zhang, Y. Wang, S.X. Ding, A.Y. Song, H.C. Yi, L.Y. Yang, Y.L. Song, Y.H. Cui, J. Liu, Z.Q. Wang, S.N. Li, Q.H. Zhao, and F. Pan, Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries, Nano Energy, 80(2021), art. No. 105478. doi: 10.1016/j.nanoen.2020.105478
      [20]
      J.L. Cong, X. Shen, Z.P. Wen, X. Wang, L.Q. Peng, J. Zeng, and J.B. Zhao, Ultra-stable and highly reversible aqueous zinc metal anodes with high preferred orientation deposition achieved by a polyanionic hydrogel electrolyte, Energy Storage Mater., 35(2021), p. 586. doi: 10.1016/j.ensm.2020.11.041
      [21]
      Q. Zhang, J.Y. Luan, L. Fu, S.G. Wu, Y.G. Tang, X.B. Ji, and H.Y. Wang, The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive, Angew. Chem. Int. Ed Engl., 58(2019), No. 44, p. 15841. doi: 10.1002/anie.201907830
      [22]
      J.Q. Huang, X.W. Chi, Q. Han, Y.Z. Liu, Y.X. Du, J.H. Yang, and Y. Liu, Thickening and homogenizing aqueous electrolyte towards highly efficient and stable Zn metal batteries, J. Electrochem. Soc., 166(2019), No. 6, p. A1211. doi: 10.1149/2.1031906jes
      [23]
      L.S. Cao, D. Li, E.Y. Hu, J.J. Xu, T. Deng, L. Ma, Y. Wang, X.Q. Yang, and C.S. Wang, Solvation structure design for aqueous Zn metal batteries, J. Am. Chem. Soc., 142(2020), No. 51, p. 21404. doi: 10.1021/jacs.0c09794
      [24]
      J.H. Zhou, M. Xie, F. Wu, Y. Mei, Y.T. Hao, L. Li, and R.J. Chen, Encapsulation of metallic Zn in a hybrid MXene/graphene aerogel as a stable Zn anode for foldable Zn-ion batteries, Adv. Mater., 34(2022), No. 1, art. No. 2106897. doi: 10.1002/adma.202106897
      [25]
      L.S. Cao, D. Li, T. Pollard, T. Deng, B. Zhang, C.Y. Yang, L. Chen, J. Vatamanu, E.Y. Hu, M.J. Hourwitz, L. Ma, M. Ding, Q. Li, S. Hou, K. Gaskell, J.T. Fourkas, X.Q. Yang, K. Xu, O. Borodin, and C.S. Wang, Fluorinated interphase enables reversible aqueous zinc battery chemistries, Nat. Nanotechnol., 16(2021), No. 8, p. 902. doi: 10.1038/s41565-021-00905-4
      [26]
      L.T. Ma, S.M. Chen, N. Li, Z.X. Liu, Z.J. Tang, J.A. Zapien, S.M. Chen, J. Fan, and C.Y. Zhi, Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries, Adv. Mater., 32(2020), No. 14, art. No. e1908121. doi: 10.1002/adma.201908121
      [27]
      Y.Z. Chu, S. Zhang, S. Wu, Z.L. Hu, G.L. Cui, and J.Y. Luo, In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes, Energy Environ. Sci., 14(2021), No. 6, p. 3609. doi: 10.1039/D1EE00308A
      [28]
      H. Jia, Z.Q. Wang, B. Tawiah, Y.D. Wang, C.Y. Chan, B. Fei, and F. Pan, Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries, Nano Energy, 70(2020), art. No. 104523. doi: 10.1016/j.nanoen.2020.104523
      [29]
      M. Song, H. Tan, D.L. Chao, and H.J. Fan, Recent advances in Zn-ion batteries, Adv. Funct. Mater., 28(2018), No. 41, art. No. 1802564. doi: 10.1002/adfm.201802564
      [30]
      L.E. Blanc, D. Kundu, and L.F. Nazar, Scientific challenges for the implementation of Zn-ion batteries, Joule, 4(2020), No. 4, p. 771. doi: 10.1016/j.joule.2020.03.002
      [31]
      Z.M. Zhao, J.W. Zhao, Z.L. Hu, J.D. Li, J.J. Li, Y.J. Zhang, C. Wang, and G.L. Cui, Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase, Energy Environ. Sci., 12(2019), No. 6, p. 1938. doi: 10.1039/C9EE00596J
      [32]
      L.T. Ma, Q. Li, Y.R. Ying, F.X. Ma, S.M. Chen, Y.Y. Li, H.T. Huang, and C.Y. Zhi, Toward practical high-areal-capacity aqueous zinc-metal batteries: Quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes, Adv. Mater., 33(2021), No. 12, art. No. 2007406. doi: 10.1002/adma.202007406
      [33]
      X.S. Xie, S.Q. Liang, J.W. Gao, S. Guo, J.B. Guo, C. Wang, G.Y. Xu, X.W. Wu, G. Chen, and J. Zhou, Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes, Energy Environ. Sci., 13(2020), No. 2, p. 503. doi: 10.1039/C9EE03545A
      [34]
      J. Shin, J. Lee, Y. Kim, Y. Park, M. Kim, and J.W. Choi, Highly reversible, grain-directed zinc deposition in aqueous zinc ion batteries, Adv. Energy Mater., 11(2021), No. 39, art. No. 2100676. doi: 10.1002/aenm.202100676
      [35]
      H. Shokrollahi, Magnetic properties and densification of Manganese–zinc soft ferrites (Mn1−xZnxFe2O4) doped with low melting point oxides, J. Magn. Magn. Mater., 320(2008), No. 3-4, p. 463. doi: 10.1016/j.jmmm.2007.07.003
      [36]
      L. Xiao, D.D. Mei, M.L. Cao, D.Y. Qu, and B.H. Deng, Effects of structural patterns and degree of crystallinity on the performance of nanostructured ZnO as anode material for lithium-ion batteries, J. Alloys Compd., 627(2015), p. 455. doi: 10.1016/j.jallcom.2014.11.195
      [37]
      S.F. Ye, L.F. Wang, F.F. Liu, P.C. Shi, H.Y. Wang, X.J. Wu, and Y. Yu, g-C3N4 derivative artificial organic/inorganic composite solid electrolyte interphase layer for stable lithium metal anode, Adv. Energy Mater., 10(2020), No. 44, art. No. 2002647. doi: 10.1002/aenm.202002647
      [38]
      Z.Y. Cao, P.Y. Zhuang, X. Zhang, M.X. Ye, J.F. Shen, and P.M. Ajayan, Strategies for dendrite-free anode in aqueous rechargeable zinc ion batteries, Adv. Energy Mater., 10(2020), No. 30, art. No. 2001599. doi: 10.1002/aenm.202001599
      [39]
      M. Eom, S. Son, C. Park, S. Noh, W.T. Nichols, and D. Shin, High performance all-solid-state lithium–sulfur battery using a Li2S–VGCF nanocomposite, Electrochim. Acta, 230(2017), p. 279. doi: 10.1016/j.electacta.2017.01.155
      [40]
      J.N. Hao, B. Li, X.L. Li, X.H. Zeng, S.L. Zhang, F.H. Yang, S.L. Liu, D. Li, C. Wu, and Z.P. Guo, An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries, Adv. Mater., 32(2020), No. 34, art. No. 2003021. doi: 10.1002/adma.202003021
      [41]
      X.Y. Tong, X.W. Ou, N.Z. Wu, H.Y. Wang, J. Li, and Y.B. Tang, High oxidation potential ≈6.0 V of concentrated electrolyte toward high-performance dual-ion battery, Adv. Energy Mater., 11(2021), No. 25, art. No. 2100151. doi: 10.1002/aenm.202100151
      [42]
      J.Y. Kim, G.C. Liu, R.E.A. Ardhi, J. Park, H. Kim, and J.K. Lee, Stable Zn metal anodes with limited Zn-doping in MgF2 interphase for fast and uniformly ionic flux, Nano-Micro Lett., 14(2022), No. 1, art. No. 46. doi: 10.1007/s40820-021-00788-z

    Catalog


    • /

      返回文章
      返回