Cite this article as: |
Guanzhou Qiuand Yufeng Guo, Current situation and development trend of titanium metal industry in China, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 599-610. https://doi.org/10.1007/s12613-022-2455-y |
郭宇峰 E-mail: yfguo@csu.edu.cn
[1] |
G.S. Wang, Application Technology of Titanium, Central South University Press, Changsha, 2007.
|
[2] |
L. Guo, W.X. He, P. Zhou, and B. Liu, Research status and development prospect of titanium and titanium alloy products in China, Hot Work. Technol., 49(2020), No. 22, p. 22.
|
[3] |
T. Nihei, K. Ohashi, M. Hattori, and S. Imazato, A surveillance study of the demand of titanium and titanium alloys in Japan, Dent. Mater. J., 39(2020), No. 1, p. 9. doi: 10.4012/dmj.2019-095
|
[4] |
X.W. Zhang, W.Y. Zhang, Y. Tong, Y.C. Ouyang, and M.L. Song, Current situation and utilization trend of global titanium resources, Conserv. Util. Miner. Resour., 39(2019), No. 5, p. 68.
|
[5] |
Y.Q. Zhao, P. Ge, and S.W. Xin, Progresses of R&D on Ti-alloy materials in recent 5 years, Mater. China, (39)2020, No. Z1, p. 527.
|
[6] |
D.G. Qing, F. Chen, L. Qiao, and Z.Q. Chen, The study of the present situation of alloying elements for titanium alloys in China, China Titanium Ind., 9(2012), No. 1, p. 18.
|
[7] |
X.M. Li, L. Liu, J. Dong, and P. Zhao, Discussion on economic analysis and decreasing cost process of titanium and titanium alloys, Mater. China, 34(2015), No. 5, p. 401.
|
[8] |
R.G. Bai, Technology and development of high-efficiency clean utilization of vanadium–titanium ore resource in Cheng steel, Hebei Metall., 2015, No. 12, p. 1.
|
[9] |
X.X. Chong, W.L. Luan, F.X. Wang, T.D. Qiu, and W.Y. Zhang, Overview of global titanium resources status and titanium consumption trend in China, Conserv. Util. Miner. Resour., 40(2020), No. 2, p. 162.
|
[10] |
Z. Li, C.X. Chen, Z.H. Ge, B.X. Zhang, and Q. Wu, Discussion on the development and utilization situation and resource security of titanium resources in China, Land Resour. Inf., 2020, No. 10, p. 75.
|
[11] |
R.B. Sun, Q.S. Wang, C.H. Yuan, C. Zhang, X.G. Zhang, and B.A. Teer, Analysis of global titanium resources situation, China Min. Mag., 28(2019), No. 6, p. 1.
|
[12] |
C.X. Cui, B.M. Hu, L.C. Zhao, and S.J. Liu, Titanium alloy production technology, market prospects and industry development, Mater. Des., 32(2011), No. 3, p. 1684. doi: 10.1016/j.matdes.2010.09.011
|
[13] |
Z. Yao and F. Deng, Discussion on the evolution and development trend of titanium resources industry in China, Met. Mine, 2018, No. 6, p. 61.
|
[14] |
X. Wu and J. Zhang, Geographical distribution and characteristics of titanium resources in China, Titanium Ind. Prog., 23(2006), No. 6, p. 8.
|
[15] |
Z.D. Lin, K.J. Song, and X.H. Yu, A review on wire and arc additive manufacturing of titanium alloy, J. Manuf. Process., 70(2021), p. 24. doi: 10.1016/j.jmapro.2021.08.018
|
[16] |
H. Jia, F.S. Lu, and B. Hao, Report on China titanium industry progress in 2020, Titanium Ind. Prog., 38(2021), No. 2, p. 34.
|
[17] |
L. Li, F.X. Zhu, P. Deng, D.F. Zhang, Y.Q. Jia, K.H. Li, L.X. Kong, and D.C. Liu, Behavior of magnesium impurity during carbochlorination of magnesium-bearing titanium slag in chloride media, J. Mater. Res. Technol., 13(2021), p. 204. doi: 10.1016/j.jmrt.2021.04.072
|
[18] |
F. Chen, C.L. Liu, Y.K. Wen, F.X. Zhu, H.G. Yao, Y.F. Guo, S. Wang, and L.Z. Yang, The conversion of calcium-containing phases and their separation with NaCl in molten salt chlorinated slags at high temperature, Sustainability, 14(2021), No. 1, art. No. 293. doi: 10.3390/su14010293
|
[19] |
L. Li, Research progress on application and technology of titanium tetrachloride both at home and abroad, Light. Met., 2021, No. 10, p. 42.
|
[20] |
R. Jin, M.H. Zheng, G. Lammel, B.A.M. Bandowe, and G.R. Liu, Chlorinated and brominated polycyclic aromatic hydrocarbons: Sources, formation mechanisms, and occurrence in the environment, Prog. Energy Combust. Sci., 76(2020), art. No. 100803. doi: 10.1016/j.pecs.2019.100803
|
[21] |
Y.F. Chen, X.N. Tang, S.P. Liu, B. Zhang, and G. Xie. Thermodynamic analysis of preparation of titanium tetrachloride by boiling chlorination process, Nonferrous Met. Eng., 9(2019), No. 5, p. 34.
|
[22] |
G.C. Du, Z.C. Li, J.B. Zhang, H.C. Mao, S.G. Ma, C.L. Fan, and Q.S. Zhu, Chlorination behaviors for green and efficient vanadium recovery from tailing of refining crude titanium tetrachloride, J. Hazard. Mater., 420(2021), art. No. 126501. doi: 10.1016/j.jhazmat.2021.126501
|
[23] |
J. Kang and T.H. Okabe, Removal of iron from titanium ore by selective chlorination using TiCl4 under high oxygen chemical potential, Int. J. Miner. Process., 149(2016), p. 111. doi: 10.1016/j.minpro.2016.02.014
|
[24] |
J. Kim, M.S. Lee, and E.J. Jung, A study of formation behavior of porous structure induced by selective chlorination of ilmenite, Mater. Chem. Phys., 241(2020), art. No. 122433. doi: 10.1016/j.matchemphys.2019.122433
|
[25] |
S. Kutsuna, Y. Ebihara, K. Nakamura, and T. Ibusuki, Heterogeneous photochemical reactions between volatile chlorinated hydrocarbons (trichloroethene and tetrachloroethene) and titanium dioxide, Atmos. Environ. Part A,, 27(1993), No. 4, p. 599.
|
[26] |
F. Chen, Y.G. Wen, Y.F. Guo, F.Q. Zheng, S. Wang, L.Z. Yang, Y. Zheng, D.Y. Li, and Y.Q. Ren, Research status of viscosity characteristics of chlorinated molten salt system, Inorg. Chem. Ind., 2021, p. 1.
|
[27] |
Y.Q. Jia, L Liang, W.L. Jiang, P. Deng, and D.C. Liu, Research progress of molten salt system and its physical properties for titanium metallurgy, J. Kunming Univ. Sci. Technol. Nat. Sci., 46(2021), No. 2, p. 1.
|
[28] |
F.L. Zhang, S.W. Liu, Y.D. Hu, Y.L. Du, and X.L. Lei, Current situation and suggestion on development of titanium industry in China, Mod. Min., 31(2015), No. 4, p. 1.
|
[29] |
J.S. Song, Scientific and sustainabie deveiopment of Chengde vanadium and titanium industry, Nonferrous Met. Process., 50(2021), No. 4, p. 7.
|
[30] |
Y.M. Hwang, G.W. Kuo, and H.H. Liu, High temperature oxidation behavior in dieless drawing of titanium alloy wires, Procedia Manuf., 15(2018), p. 294. doi: 10.1016/j.promfg.2018.07.222
|
[31] |
Wahyudiono, H. Kondo, S. Machmudah, H. Kanda, Y.P. Zhao, and M. Goto, Synthesis of titanium dioxide nanoparticle by means of discharge plasma over an aqueous solution under high-pressure gas environment, Alexandria Eng. J., 61(2022), No. 5, p. 3805. doi: 10.1016/j.aej.2021.08.081
|
[32] |
P.J. Lu, S.C. Huang, Y.P. Chen, L.C. Chiueh, and D.Y.C. Shih, Analysis of titanium dioxide and zinc oxide nanoparticles in cosmetics, J. Food Drug Anal., 23(2015), No. 3, p. 587. doi: 10.1016/j.jfda.2015.02.009
|
[33] |
Y.J. Zhang, T. Qi, and Y. Zhang, A novel preparation of titanium dioxide from titanium slag, Hydrometallurgy, 96(2009), No. 1-2, p. 52. doi: 10.1016/j.hydromet.2008.08.002
|
[34] |
H.J. Gai, H.Z. Wang, L. Liu, B.X. Feng, M. Xiao, Y.B. Tang, X.F. Qu, H.B. Song, and T.T. Huang, Potassium and iodide codoped mesoporous titanium dioxide for enhancing photocatalytic degradation of phenolic compounds, Chem. Phys. Lett., 767(2021), art. No. 138367. doi: 10.1016/j.cplett.2021.138367
|
[35] |
J.W. Wang, X.L. Ren, Q.F. Wei, D. Yang, and C.L. Wu, Current research situation and prospect for comprehensive utilization of waste acid from titanium dioxide production, Inorg. Chem. Ind., 41(2009), No. 9, p. 4.
|
[36] |
H.Y. Pang, R.F. Lu, T. Zhang, L. Lü, Y.X. Chen, and S.W. Tang, Chemical dehydration coupling multi-effect evaporation to treat waste sulfuric acid in titanium dioxide production process, Chin. J. Chem. Eng., 28(2020), No. 4, p. 1162. doi: 10.1016/j.cjche.2020.02.009
|
[37] |
Y. Xiong, B. Wu, J.W. Zhu, X.G. Fan, P.X. Cai, J. Wen, and X. Liu, Preparation of magnesium hydroxide from leachate of dolomitic phosphate ore with dilute waste acid from titanium dioxide production, Hydrometallurgy, 142(2014), p. 137. doi: 10.1016/j.hydromet.2013.11.013
|
[38] |
M.J. Gazquez, J. Mantero, F. Mosqueda, I. Vioque, R. García-Tenorio, and J.P. Bolívar, Radiological and chemical risks by waste scales generated in the titanium dioxide industry, Chemosphere, 274(2021), art. No. 129732. doi: 10.1016/j.chemosphere.2021.129732
|
[39] |
D. Wang, J.L. Chu, Y.H. Liu, J. Li, T.Y. Xue, W.J. Wang, and T. Qi, Novel process for titanium dioxide production from titanium slag: NaOH–KOH binary molten salt roasting and water leaching, Ind. Eng. Chem. Res., 52(2013), No. 45, p. 15756. doi: 10.1021/ie400701g
|
[40] |
J.Z. Gong, Future trend and development course of titanium dioxide pigment industry for sixty years in China, Inorg. Chem. Ind., 52(2020), No. 10, p. 55.
|
[41] |
Y. Xia, W.Q. Wang, L. Zhou, Z.Y. Sun, G. Wang, and X.C. Xu, Current status and development of China’s titanium, Coat. Prot., 42(2021), No. 9, p. 56.
|
[42] |
H. Jia, F.S. Lu, and B. Hao, Report on China titanium industry progress in 2017, Titanium Ind. Prog., 35(2018), No. 2, p. 1.
|
[43] |
H. Jia, F.S. Lu, and B. Hao, Report on China titanium industry progress in 2015, Titanium Ind. Prog., 33(2016), No. 2, p. 1.
|
[44] |
F. Yang, Analysis of Capacity, Output and Import and Export Prices of Sponge Titanium in China in 2017, 2017 [2022-3-19]. https://www.chyxx.com/industry/201711/586034.html
|
[45] |
T. Zhang, Analyzing of titanium patents at home and abroad, Iron Steel Vanadium Titanium, 38(2017), No. 6, p. 158.
|
[46] |
G.Y. Jiang, Research on Titanium Mineral Availability in China [Dissertation], China University of Geosciences, Beijing, 2017.
|
[47] |
Q.Y. Zhao, Y.N. Chen, Y.K. Xu, and Y.Q. Zhao, Progress and prospects of cost-effective manufacturing technologies for titanium alloys, Chin. J. Nonferrous Met., 31(2021), No. 11, p. 3127.
|
[48] |
Z.X. Feng, J.H. Yi, Q.N. Shi, J. Tan, Y.M. Shi, Z.Y. Xu, and K. Liu, Research on sustainable development of titanium industry in China, J. Kunming Univ. Sci. Technol. Nat. Sci., 41(2016), No. 5, p. 16.
|
[49] |
Z.B. Han and F.Z. Chang, Material Problem and solutions about further development of titanium industry in china, Titanium Ind. Prog., 29(2016), No. 1, p.p.5.
|
[50] |
F. Chen, Y.F. Guo, T. Jiang, F.Q. Zheng, S. Wang, and L.Z. Yang, Effects of high pressure roller grinding on size distribution of vanadium–titanium magnetite concentrate particles and improvement of green pellet strength, J. Iron Steel Res. Int., 24(2017), No. 3, p. 266. doi: 10.1016/S1006-706X(17)30039-0
|
[51] |
J.F. Jing, Y.F. Guo, F.Q. Zheng, X.L. Xie, L.Z. Yang, and F. Chen, Development status on comprehensive utilization of Ti-bearing blast furnace slag, Met. Mine, 2018, No. 4, p. 185.
|
[52] |
S.S. Liu, Y.F. Guo, G.Z. Qiu, and T. Jiang, Mechanism of vanadic titanomagnetite solid-state reduction, Rare Met., 39(2020), No. 11, p. 1348. doi: 10.1007/s12598-014-0294-3
|
[53] |
T. Jiang, S. Wang, Y.F. Guo, F. Chen, and F.Q. Zheng, Effects of basicity and MgO in slag on the behaviors of smelting vanadium titanomagnetite in the direct reduction–electric furnace process, Metals, 6(2016), No. 5, art. No. 107. doi: 10.3390/met6050107
|
[54] |
S. Wang, Y.F. Guo, F.Q. Zheng, F. Chen, L.Z. Yang, T. Jiang, and G.Z. Qiu, Behavior of vanadium during reduction and smelting of vanadium titanomagnetite metallized pellets, Trans. Nonferrous Met. Soc. China, 30(2020), No. 6, p. 1687. doi: 10.1016/S1003-6326(20)65330-4
|
[55] |
Y.L. Sui, Y.F. Guo, T. Jiang, X.L. Xie, S. Wang, and F.Q. Zheng, Gas-based reduction of vanadium titano-magnetite concentrate: Behavior and mechanisms, Int. J. Miner. Metall. Mater., 24(2017), No. 1, p. 10. doi: 10.1007/s12613-017-1373-x
|
[56] |
S.S. Liu, Y.F. Guo, G.Z. Qiu, T. Jiang, and F. Chen, Solid-state reduction kinetics and mechanism of pre-oxidized vanadium–titanium magnetite concentrate, Trans. Nonferrous Met. Soc. China, 24(2014), No. 10, p. 3372. doi: 10.1016/S1003-6326(14)63479-8
|
[57] |
F.Q. Zheng, Y.F. Guo, G.Z. Qiu, F. Chen, S. Wang, Y.L. Sui, T. Jiang, and L.Z. Yang, A novel process for preparation of titanium dioxide from Ti-bearing electric furnace slag: NH4HF2–HF leaching and hydrolyzing process, J. Hazard. Mater., 344(2018), p. 490. doi: 10.1016/j.jhazmat.2017.10.042
|
[58] |
S. Wang, Y.F. Guo, T. Jiang, F. Chen, F.Q. Zheng, and L.Z. Yang, Melting behavior of titanium-bearing electric furnace slag for effective smelting of vanadium titanomagnetite, JOM, 71(2019), No. 5, p. 1858. doi: 10.1007/s11837-018-2983-0
|
[59] |
S. Wang, Y.F. Guo, T. Jiang, F. Chen, F.Q. Zheng, M.J. Tang, L.Z. Yang, and G.Z. Qiu, Appropriate titanium slag composition during smelting of vanadium titanomagnetite metallized pellets, Trans. Nonferrous Met. Soc. China, 28(2018), No. 12, p. 2528. doi: 10.1016/S1003-6326(18)64899-X
|
[60] |
G.Q. Ma and M. Cheng, Experimental study on preparation of titanium-rich material by pressure leaching of titanium concentrate from titanium dioxide waste acid, Ferroelectrics, 581(2021), No. 1, p. 281. doi: 10.1080/00150193.2021.1903258
|
[61] |
J.Y. Xiang, S.L. Liu, X.W. Lv, and C.G. Bai, Preparation of rutile from ilmenite concentrate through pressure leaching with hydrochloric acid, Metall. Mater. Trans. B, 48(2017), No. 2, p. 1333. doi: 10.1007/s11663-016-0885-5
|
[62] |
W.L. Nie, S.M. Wen, Q.C. Feng, D. Liu, and Y.W. Zhou, Mechanism and kinetics study of sulfuric acid leaching of titanium from titanium-bearing electric furnace slag, J. Mater. Res. Technol., 9(2020), No. 2, p. 1750. doi: 10.1016/j.jmrt.2019.12.006
|
[63] |
C.M. Xiao, Basic Research on Titanium and Iron Separation by Solid State Reduction of Ilmenite [Dissertation], Central South University, Changsha, 2005.
|
[64] |
T.J. Bai, W.Z. Ding, X.F. Shang, D.S. Tan, and S.Q. Guo, Research on reduction-rusting process of Panzhihua ilmenite, Iron Steel Vanadium Titanium, 37(2016), No. 4, p. 8.
|
[65] |
J. Liu, Development of study on preparation of Ti-rich raw materials for boiling chlorinated from Panzhihua titanium resources, China Nonferrous Metall., 47(2018), No. 6, p. 49.
|
[66] |
Y.S. Zhou, G.Z. Qiu, J.F. Jing, F.Q. Zheng, S. Wang, F. Chen, and Y.F. Guo, A novel process for preparation Ti-rich material from modified electric furnace titanium slag by phase deconstruction method, Chin. J. Process Eng., 2021 [2022-03-19]. http://kns.cnki.net/kcms/detail/11.4541.TQ.20210811.0941.002.html
|
[67] |
F.Q. Zheng, Y.F. Guo, F. Chen, S. Wang, J.L. Zhang, L.Z. Yang, and G.Z. Qiu, Fluoride leaching of titanium from Ti-bearing electric furnace slag in [NH4+]–[F–] solution, Metals, 11(2021), No. 8, art. No. 1176. doi: 10.3390/met11081176
|
[68] |
P.H. Wang, Q.Y. Yi, M.Y. Xing, and J.L. Zhang, Selective synthesis of TiO2 single nanocrystals and titanate nanotubes: A controllable atomic arrangement approach via NH4TiOF3 mesocrystals, Phys. Chem. Chem. Phys., 17(2015), No. 34, p. 21982. doi: 10.1039/C5CP03449C
|
[69] |
H. Yang, P.F. Gao, X.G. Fan, H.W. Li, Z.C. Sun, H. Li, L.G. Guo, M. Zhan, and Y.L. Liu, Some advances in plastic forming technologies of titanium alloys, Procedia Eng., 81(2014), p. 44. doi: 10.1016/j.proeng.2014.09.127
|
[70] |
F.Y. Zhou, China can take the road of steel and titanium co-existence, China Nonferrous Metals News, 2002-12-05 [2022-3-19]. https://jz.docin.com/p-722898413.html
|
[71] |
B. Ma, Combination of steel and titanium innovation model will achieve low-cost manufacturing of titanium alloy, Science and Technology Daily, 2016-10-10 [2022-3-19]. https://finance.huanqiu.com/article/9CaKrnJXYlp
|
[72] |
T.X. Pan, Giving Full Play to the Advantages of Steel–Titanium Combination: The Titanium Alloy Project of the National Key Research and Development Program of China was launched to Strengthen and Consolidate the Titanium Industry, China Nonferrous Metals Network, 2016-9-29 [2022-3-19]. https://www.cnmn.com.cn/ShowNews1.aspx?id=357783
|
[73] |
Y. Chen, The Combination of Titanium and Steel Makes the Large-Scale Success of the Titanium Lenient Plate Industry Chain of Xingsheng Titanium, 2018-5-22 [2022-3-19]. https://www.sotai.cn/news/show-7342.html
|
[74] |
X.L. Meng and Y.H. Wang, “Steel–Titanium Joint Model” Creates International Advanced Level: Panzhihua Steel Co., Ltd. Has Realized the Industrialization of Key Technology of Pure Titanium Coil Hot Rolling, China Nonferrous Metals Network, 2015-9-18 [2022-3-19]. https://www.cnmn.com.cn/ShowNews1.aspx?id=326958
|
[75] |
H. Jia, F.S. Lu, and B. Hao, Report on China Titanium Industry Progress in 2018, Titanium Ind. Prog., 36(2019), No. 3, p. 42.
|
[76] |
H. Jia, F.S. Lu, and B. Hao, Report on China titanium industry progress in 2019, Titanium Ind. Prog., 37(2020), No. 3, p. 33.
|
[77] |
J. Zhang, Optimization technology of titanium processing material forming based on dynamic control, World Nonferrous Met., 2015, No. 10, p. 66.
|