Cite this article as:

Wenjun Liu, Bin Jiang, Hongchen Xiang, Qing Ye, Shengqi Xia, Siqiang Chen, Jiangfeng Song, Yanlong Ma, and Mingbo Yang, High-temperature mechanical properties of as-extruded AZ80 magnesium alloy at different strain rates, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp.1373-1379. https://dx.doi.org/10.1007/s12613-022-2456-x
Wenjun Liu, Bin Jiang, Hongchen Xiang, Qing Ye, Shengqi Xia, Siqiang Chen, Jiangfeng Song, Yanlong Ma, and Mingbo Yang, High-temperature mechanical properties of as-extruded AZ80 magnesium alloy at different strain rates, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp.1373-1379. https://dx.doi.org/10.1007/s12613-022-2456-x
引用本文 PDF XML SpringerLink

不同应变速率下AZ80镁合金的高温力学性能

摘要: AZ80作为典型的商用变形镁合金之一,由于强度高而广泛应用于挤压型材和大型锻件,充分认识其在热加工过程中的变形特性具有重要的理论意义和应用价值。目前,AZ80镁合金的热变形行为研究主要集中于150–400°C的温度范围,有关合金在400–450°C之间的热变形行为研究非常有限,更不用说高于 450°C。合金在高温下(特别是固相线温度附近)的变形是一个非常复杂的过程,在进行流变应力分析时,还需要考虑涉及脆性温度区间的零强度和零塑性。同时,材料的热变形行为不仅受变形温度影响,也受变形速率影响。本文运用Gleeble 1500D热模拟机对AZ80变形镁合金进行了450–525°C温度范围内不同应变速率的高温性能研究,并采用显微组织观察、断口形貌分析和热力学计算的方法研究了不同温度和应变速率下的合金组织特征(晶粒尺寸、第二相)、断裂方式,以及固液相变化规律。研究结果表明,应变速率为0.15 s−1时,AZ80镁合金的零塑性出现在500°C,当应变速率增加至3.0 s−1,合金的零强度和零塑性同时出现在525°C。较低的应变速率加速了合金零塑性的到来。随着温度的升高,合金的失效形式逐渐由穿晶断裂发展为解理断裂。当温度进一步升高,合金中的液态含量达0.03mol%–0.13mol%时,出现沿晶断裂,断口表面出现冰糖状形貌和熔化痕迹。断面上Mg17Al12随温度和应变速率增加,析出量增多,晶界析出更明显。Mg17Al12 和 Al8Mn5 粒子的低熔点复合物的存在是 AZ80 镁合金在高温下脆性断裂的主要原因。在合金断口表面出现糖样晶粒和熔合痕迹。

 

High-temperature mechanical properties of as-extruded AZ80 magnesium alloy at different strain rates

Abstract: The mechanical properties of as-extruded AZ80 magnesium alloy at temperatures of 450–525°C and strain rates of 3.0 s−1 and 0.15 s−1 were investigated by tensile tests. Zero ductility of alloy appeared at 500°C with a strain rate of 0.15 s−1, while the zero strength and zero ductility of the alloy were obtained nearly simultaneously at 525°C with a strain rate of 3.0 s−1. The results indicated that the lower strain rate accelerated the arrival of zero ductility. As the temperature increased, the failure mode of the alloy developed from trans-granular fracture to cleavage fracture and then to inter-granular fracture with the feature of sugar-like grains and fusion traces. The existence of the low-melting composite of β-Mg17Al12 and Al8Mn5 particles segregated near the Mg17Al12 phase along grain boundaries were demonstrated to be the reason for the brittle fracturing of the AZ80 alloy at high temperatures. Furthermore, microstructural evolution at temperatures approaching the solidus temperature was discussed to clarify magnesium alloy’s high temperature deformation mechanism.

 

/

返回文章
返回