留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 7
Jul.  2022

图(9)  / 表(2)

数据统计

分享

计量
  • 文章访问数:  1858
  • HTML全文浏览量:  361
  • PDF下载量:  58
  • 被引次数: 0
Wenjun Liu, Bin Jiang, Hongchen Xiang, Qing Ye, Shengqi Xia, Siqiang Chen, Jiangfeng Song, Yanlong Ma, and Mingbo Yang, High-temperature mechanical properties of as-extruded AZ80 magnesium alloy at different strain rates, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1373-1379. https://doi.org/10.1007/s12613-022-2456-x
Cite this article as:
Wenjun Liu, Bin Jiang, Hongchen Xiang, Qing Ye, Shengqi Xia, Siqiang Chen, Jiangfeng Song, Yanlong Ma, and Mingbo Yang, High-temperature mechanical properties of as-extruded AZ80 magnesium alloy at different strain rates, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1373-1379. https://doi.org/10.1007/s12613-022-2456-x
引用本文 PDF XML SpringerLink
研究论文

不同应变速率下AZ80镁合金的高温力学性能

  • 通讯作者:

    刘文君    E-mail: wjliu@cqut.edu.cn

    蒋斌    E-mail: jiangbinrong@cqu.edu.cn

文章亮点

  • (1) 系统地研究了AZ80镁合金在450–525°C 高温下的力学性能和微观组织演变规律。
  • (2) 探索了应变速率对合金高温力学行为的作用机理。
  • (3) 总结并提出了影响合金高温力学性能的因素及其在组织特征上的表现。
  • AZ80作为典型的商用变形镁合金之一,由于强度高而广泛应用于挤压型材和大型锻件,充分认识其在热加工过程中的变形特性具有重要的理论意义和应用价值。目前,AZ80镁合金的热变形行为研究主要集中于150–400°C的温度范围,有关合金在400–450°C之间的热变形行为研究非常有限,更不用说高于 450°C。合金在高温下(特别是固相线温度附近)的变形是一个非常复杂的过程,在进行流变应力分析时,还需要考虑涉及脆性温度区间的零强度和零塑性。同时,材料的热变形行为不仅受变形温度影响,也受变形速率影响。本文运用Gleeble 1500D热模拟机对AZ80变形镁合金进行了450–525°C温度范围内不同应变速率的高温性能研究,并采用显微组织观察、断口形貌分析和热力学计算的方法研究了不同温度和应变速率下的合金组织特征(晶粒尺寸、第二相)、断裂方式,以及固液相变化规律。研究结果表明,应变速率为0.15 s−1时,AZ80镁合金的零塑性出现在500°C,当应变速率增加至3.0 s−1,合金的零强度和零塑性同时出现在525°C。较低的应变速率加速了合金零塑性的到来。随着温度的升高,合金的失效形式逐渐由穿晶断裂发展为解理断裂。当温度进一步升高,合金中的液态含量达0.03mol%–0.13mol%时,出现沿晶断裂,断口表面出现冰糖状形貌和熔化痕迹。断面上Mg17Al12随温度和应变速率增加,析出量增多,晶界析出更明显。Mg17Al12 和 Al8Mn5 粒子的低熔点复合物的存在是 AZ80 镁合金在高温下脆性断裂的主要原因。在合金断口表面出现糖样晶粒和熔合痕迹。
  • Research Article

    High-temperature mechanical properties of as-extruded AZ80 magnesium alloy at different strain rates

    + Author Affiliations
    • The mechanical properties of as-extruded AZ80 magnesium alloy at temperatures of 450–525°C and strain rates of 3.0 s−1 and 0.15 s−1 were investigated by tensile tests. Zero ductility of alloy appeared at 500°C with a strain rate of 0.15 s−1, while the zero strength and zero ductility of the alloy were obtained nearly simultaneously at 525°C with a strain rate of 3.0 s−1. The results indicated that the lower strain rate accelerated the arrival of zero ductility. As the temperature increased, the failure mode of the alloy developed from trans-granular fracture to cleavage fracture and then to inter-granular fracture with the feature of sugar-like grains and fusion traces. The existence of the low-melting composite of β-Mg17Al12 and Al8Mn5 particles segregated near the Mg17Al12 phase along grain boundaries were demonstrated to be the reason for the brittle fracturing of the AZ80 alloy at high temperatures. Furthermore, microstructural evolution at temperatures approaching the solidus temperature was discussed to clarify magnesium alloy’s high temperature deformation mechanism.
    • loading
    • [1]
      S.H. You, Y.D. Huang, K.U. Kainer, and N. Hort, Recent research and developments on wrought magnesium alloys, J. Magnesium Alloys, 5(2017), No. 3, p. 239. doi: 10.1016/j.jma.2017.09.001
      [2]
      T.C. Xu, Y. Yang, X.D. Peng, J.F. Song, and F.S. Pan, Overview of advancement and development trend on magnesium alloy, J. Magnesium Alloys, 7(2019), No. 3, p. 536. doi: 10.1016/j.jma.2019.08.001
      [3]
      J.F. Song, J. She, D.L. Chen, and F.S. Pan, Latest research advances on magnesium and magnesium alloys worldwide, J. Magnesium Alloys, 8(2020), No. 1, p. 1. doi: 10.1016/j.jma.2020.02.003
      [4]
      J. Rong, W.L. Xiao, X.Q. Zhao, C.L. Ma, H.M. Liao, D.L. He, M. Chen, M. Huang, and C. Huang, High thermal conductivity and high strength magnesium alloy for high pressure die casting ultrathin-walled components, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 88. doi: 10.1007/s12613-021-2318-y
      [5]
      Y. Li, P.J. Hou, Z.G. Wu, Z.L. Feng, Y. Ren, and H. Choo, Dynamic recrystallization of a wrought magnesium alloy: Grain size and texture maps and their application for mechanical behavior predictions, Mater. Des., 202(2021), art. No. 109562. doi: 10.1016/j.matdes.2021.109562
      [6]
      J. Denk, L. Whitmore, O. Huber, O. Diwald, and H. Saage, Concept of the highly strained volume for fatigue modeling of wrought magnesium alloys, Int. J. Fatigue, 117(2018), p. 283. doi: 10.1016/j.ijfatigue.2018.08.025
      [7]
      Z.R. Zeng, M.Z. Bian, S.W. Xu, W.N. Tang, C. Davies, N. Birbilis, and J.F. Nie, Optimisation of alloy composition for highly-formable magnesium sheet, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1388. doi: doi.org/10.1007/s12613-021-2365-4
      [8]
      J.C. Yu, B. Song, D.B. Xia, X. Zeng, Y.D. Huang, N. Hort, P.L. Mao, and Z. Liu, Dynamic tensile properties and microstructural evolution of extruded EW75 magnesium alloy at high strain rates, J. Magnesium Alloys, 8(2020), No. 3, p. 849. doi: 10.1016/j.jma.2020.02.013
      [9]
      J. Wang, G.M. Zhu, L.Y. Wang, E. Vasilev, J.S. Park, G. Sha, X.Q. Zeng, and M. Knezevic, Origins of high ductility exhibited by an extruded magnesium alloy Mg–1.8Zn–0.2Ca: Experiments and crystal plasticity modeling, J. Mater. Sci. Technol., 84(2021), p. 27. doi: 10.1016/j.jmst.2020.12.047
      [10]
      H. Jafari, A.H.M. Tehrani, and M. Heydari, Effect of extrusion process on microstructure and mechanical and corrosion properties of biodegradable Mg–5Zn–1.5Y magnesium alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 490. doi: 10.1007/s12613-021-2275-5
      [11]
      M.E. Mehtedi, A. DOrazio, A. Forcellese, M. Pieralisi, and M. Simoncini, Effect of the rolling temperature on hot formability of ZAM100 magnesium alloy, Procedia CIRP, 67(2018), p. 493. doi: 10.1016/j.procir.2017.12.250
      [12]
      Y. Wang, F. Li, N. Bian, H.Q. Du, and P. da Huo, Mechanism of plasticity enhancement of AZ31B magnesium alloy sheet by accumulative alternating back extrusion, J. Magnesium Alloys, (2021). DOI: 10.1016/j.jma.2021.08.035
      [13]
      Z. Zhang, J.H. Zhang, J. Wang, Z.H. Li, J.S. Xie, S.J. Liu, K. Guan, and R.Z. Wu, Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 30. doi: 10.1007/s12613-020-2190-1
      [14]
      R.B. Mei, L. Bao, F. Huang, X. Zhang, X.W. Qi, and X.H. Liu, Simulation of the flow behavior of AZ91 magnesium alloys at high deformation temperatures using a piecewise function of constitutive equations, Mech. Mater., 125(2018), p. 110. doi: 10.1016/j.mechmat.2018.07.011
      [15]
      A. Hadadzadeh and M.A. Wells, Analysis of the hot deformation of ZK60 magnesium alloy, J. Magnesium Alloys, 5(2017), No. 4, p. 369. doi: 10.1016/j.jma.2017.09.002
      [16]
      J.C. Long, Q.X. Xia, G.F. Xiao, Y. Qin, and S. Yuan, Flow characterization of magnesium alloy ZK61 during hot deformation with improved constitutive equations and using activation energy maps, Int. J. Mech. Sci., 191(2021), art. No. 106069. doi: 10.1016/j.ijmecsci.2020.106069
      [17]
      X.P. Zhang, H.X. Wang, L.P. Bian, S.X. Zhang, Y.P. Zhuang, W.L. Cheng, and W. Liang, Microstructure evolution and mechanical properties of Mg–9Al–1Si–1SiC composites processed by multi-pass equal-channel angular pressing at various temperatures, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1966. doi: 10.1007/s12613-020-2123-z
      [18]
      H.M. Wang, P.D. Wu, S. Kurukuri, M.J. Worswick, Y.H. Peng, D. Tang, and D.Y. Li, Strain rate sensitivities of deformation mechanisms in magnesium alloys, Int. J. Plast., 107(2018), p. 207. doi: 10.1016/j.ijplas.2018.04.005
      [19]
      H. Wang, X. Sun, S. Kurukuri, M.J. Worswick, D.Y. Li, Y.H. Peng, and P.D. Wu, The strain rate sensitive and anisotropic behavior of rare-earth magnesium alloy ZEK100 sheet, J. Magnesium Alloys, (2021). DOI: 10.1016/j.jma.2021.06.010
      [20]
      L. Li, O. Muránsky, E.A. Flores-Johnson, S. Kabra, L.M. Shen, and G. Proust, Effects of strain rate on the microstructure evolution and mechanical response of magnesium alloy AZ31, Mater. Sci. Eng. A, 684(2017), p. 37. doi: 10.1016/j.msea.2016.12.015
      [21]
      E. Karimi, A. Zarei-Hanzaki, M.H. Pishbin, H.R. Abedi, and P. Changizian, Instantaneous strain rate sensitivity of wrought AZ31 magnesium alloy, Mater. Des., 49(2013), p. 173. doi: 10.1016/j.matdes.2013.01.068
      [22]
      Z.W. Cai, F.X. Chen, and J.Q. Guo, Constitutive model for elevated temperature flow stress of AZ41M magnesium alloy considering the compensation of strain, J. Alloys Compd., 648(2015), p. 215. doi: 10.1016/j.jallcom.2015.06.257
      [23]
      A.S. Khan, A. Pandey, T. Gnäupel-Herold, and R.K. Mishra, Mechanical response and texture evolution of AZ31 alloy at large strains for different strain rates and temperatures, Int. J. Plast., 27(2011), No. 5, p. 688. doi: 10.1016/j.ijplas.2010.08.009
      [24]
      G.Z. Kang and H. Li, Review on cyclic plasticity of magnesium alloys: Experiments and constitutive models, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 567. doi: 10.1007/s12613-020-2216-8
      [25]
      V.S. Hristov and K. Yoshida, Effects of chemical composition on drawability and mechanical properties of magnesium alloy wires, Procedia Manuf., 15(2018), p. 341. doi: 10.1016/j.promfg.2018.07.228
      [26]
      L.Y. Jiang, W.J. Huang, D.F. Zhang, F. Guo, H.S. Xue, J.Y. Xu, and F.S. Pan, Effect of Sn on the microstructure evolution of AZ80 magnesium alloy during hot compression, J. Alloys Compd., 727(2017), p. 205. doi: 10.1016/j.jallcom.2017.07.225
      [27]
      S. Asqardoust, A. Zarei-Hanzaki, S.M. Fatemi, and M. Moradjoy-Hamedani, High temperature deformation behavior and microstructural evolutions of a high Zr containing WE magnesium alloy, J. Alloys Compd., 669(2016), p. 108. doi: 10.1016/j.jallcom.2016.01.232
      [28]
      J.L. Zhang, H. Xie, Z.L. Lu, Y. Ma, S.P. Tao, and K. Zhao, Microstructure evolution and mechanical properties of AZ80 magnesium alloy during high-pass multi-directional forging, Results Phys., 10(2018), p. 967. doi: 10.1016/j.rinp.2018.08.028
      [29]
      G.L. Shi, K. Zhang, X.G. Li, Y.J. Li, M.L. Ma, J.W. Yuan, and H.J. Zhang, Dislocation configuration evolution during extension twinning and its influence on precipitation behavior in AZ80 wrought magnesium alloy, J. Magnesium Alloys, (2021). DOI: 10.1016/j.jma.2021.08.032
      [30]
      L. Luo, Z.Y. Xiao, Q.H. Huo, Y. Yang, W.Y. Huang, J.C. Guo, Y.X. Ye, and X.Y. Yang, Enhanced mechanical properties of a hot-extruded AZ80 Mg alloy rod by pre-treatments and post-hot compression, J. Alloys Compd., 740(2018), p. 180. doi: 10.1016/j.jallcom.2017.12.296
      [31]
      X. Song, L. Wang, and Y. Liu, A review of the strengthening—Toughening behavior and mechanisms of advanced structural materials by multifield coupling treatment, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 185. doi: 10.1007/s12613-021-2350-y
      [32]
      Z.M. Du, D.Y. Wang, and H.J. Zhang, Influence of hot extrusion process on microstructure and mechanical properties of Mg–Zn–Y–Zr magnesium alloy, Rare Met. Mater. Eng., 47(2018), No. 6, p. 1655. doi: 10.1016/S1875-5372(18)30146-2
      [33]
      Z.J. Zhang, L. Yuan, D.B. Shan, and B. Guo, The quantitative effects of temperature and cumulative strain on the mechanical properties of hot-extruded AZ80 Mg alloy during multi-directional forging, Mater. Sci. Eng. A, 827(2021), art. No. 142036. doi: 10.1016/j.msea.2021.142036
      [34]
      X. Zhao, P.C. Gao, G. Chen, J.F. Wei, Z. Zhu, F.F. Yan, Z.M. Zhang, and Q. Wang, Effects of aging treatments on low-cycle fatigue behavior of extruded AZ80 for automobile wheel disks, Mater. Sci. Eng. A, 799(2021), art. No. 140366. doi: 10.1016/j.msea.2020.140366
      [35]
      Z.X. Su, L. Wan, C.Y. Sun, Y. Cai, and D.J. Yang, Hot deformation behavior of AZ80 magnesium alloy towards optimization of its hot workability, Mater. Charact., 122(2016), p. 90. doi: 10.1016/j.matchar.2016.10.026
      [36]
      Y. Cai, L. Wan, Z.H. Guo, C.Y. Sun, D.J. Yang, Q.D. Zhang, and Y.L. Li, Hot deformation characteristics of AZ80 magnesium alloy: Work hardening effect and processing parameter sensitivities, Mater. Sci. Eng. A, 687(2017), p. 113. doi: 10.1016/j.msea.2017.01.057
      [37]
      P. Prakash, D. Toscano, S.K. Shaha, M.A. Wells, H. Jahed, and B.W. Williams, Effect of temperature on the hot deformation behavior of AZ80 magnesium alloy, Mater. Sci. Eng. A, 794(2020), art. No. 139923. doi: 10.1016/j.msea.2020.139923
      [38]
      Q. Tang, M.Y. Zhou, L.L. Fan, Y. Zhang, G.F. Quan, and B. Liu, Constitutive behavior of AZ80 M magnesium alloy compressed at elevated temperature and containing a small fraction of liquid, Vacuum, 155(2018), p. 476. doi: 10.1016/j.vacuum.2018.06.053
      [39]
      C. Wang, T.J. Luo, and Y.S. Yang, Low cycle fatigue behavior of the extruded AZ80 magnesium alloy under different strain amplitudes and strain rates, J. Magnesium Alloys, 4(2016), No. 3, p. 181. doi: 10.1016/j.jma.2016.07.002
      [40]
      G. Chen, S. Zhang, H.M. Zhang, F. Han, G. Wang, Q. Chen, and Z.D. Zhao, Controlling liquid segregation of semi-solid AZ80 magnesium alloy by back pressure thixoextruding, J. Mater. Process. Technol., 259(2018), p. 88. doi: 10.1016/j.jmatprotec.2018.04.023
      [41]
      Y. Li, H.X. Li, L. Katgerman, Q. Du, J.S. Zhang, and L.Z. Zhuang, Recent advances in hot tearing during casting of aluminium alloys, Prog. Mater. Sci., 117(2021), art. No. 100741. doi: 10.1016/j.pmatsci.2020.100741
      [42]
      J.F. Song, F.S. Pan, B. Jiang, A. Atrens, M.X. Zhang, and Y. Lu, A review on hot tearing of magnesium alloys, J. Magnesium Alloys, 4(2016), No. 3, p. 151. doi: 10.1016/j.jma.2016.08.003
      [43]
      F. D’Elia, C. Ravindran, D. Sediako, K.U. Kainer, and N. Hort, Hot tearing mechanisms of B206 aluminum-copper alloy, Mater. Des., 64(2014), p. 44. doi: 10.1016/j.matdes.2014.07.024
      [44]
      F.S. Pan, Z.X. Feng, X.Y. Zhang, and A.T. Tang, The types and distribution characterization of Al-Mn phases in the AZ61 magnesium alloy, Procedia Eng., 27(2012), p. 833. doi: 10.1016/j.proeng.2011.12.528
      [45]
      T. Chen, Y. Yuan, T.T. Liu, D.J. Li, A.T. Tang, X.H. Chen, R. Schmid-Fetzer, and F.S. Pan, Effect of Mn addition on melt purification and Fe tolerance in Mg alloys, JOM, 73(2021), No. 3, p. 892. doi: 10.1007/s11837-020-04550-5
      [46]
      G. Zeng, J.W. Xian, and C.M. Gourlay, Nucleation and growth crystallography of Al8Mn5 on B2-Al(Mn, Fe) in AZ91 magnesium alloys, Acta Mater., 153(2018), p. 364. doi: 10.1016/j.actamat.2018.04.032
      [47]
      L. Peng, G. Zeng, J. Xian, and C.M. Gourlay, Al–Mn–Fe intermetallic formation in AZ91 magnesium alloys: Effects of impurity iron, Intermetallics, 142(2022), art. No. 107465. doi: 10.1016/j.intermet.2022.107465
      [48]
      T.W. Clyne and G.J. Davies, The influence of composition on solidification cracking susceptibility in binary alloys, Br. Foundryman, 74(1981), No. 4, p. 65.
      [49]
      M.H. Ghoncheh, S.G. Shabestari, A. Asgari, and M. Karimzadeh, Nonmechanical criteria proposed for prediction of hot tearing sensitivity in 2024 aluminum alloy, Trans. Nonferrous Met. Soc. China, 28(2018), No. 5, p. 848. doi: 10.1016/S1003-6326(18)64718-1
      [50]
      G.J. Zhang, Y. Wang, Z. Liu, and S.M. Liu, Influence of Al addition on solidification path and hot tearing susceptibility of Mg–2Zn–(3 + 0.5x)Y–xAl alloys, J. Magnesium Alloys, 7(2019), No. 2, p. 272. doi: 10.1016/j.jma.2019.04.001

    Catalog


    • /

      返回文章
      返回