Cite this article as: |
Wenjun Liu, Bin Jiang, Hongchen Xiang, Qing Ye, Shengqi Xia, Siqiang Chen, Jiangfeng Song, Yanlong Ma, and Mingbo Yang, High-temperature mechanical properties of as-extruded AZ80 magnesium alloy at different strain rates, Int. J. Miner. Metall. Mater., 29(2022), No. 7, pp. 1373-1379. https://doi.org/10.1007/s12613-022-2456-x |
刘文君 E-mail: wjliu@cqut.edu.cn
蒋斌 E-mail: jiangbinrong@cqu.edu.cn
[1] |
S.H. You, Y.D. Huang, K.U. Kainer, and N. Hort, Recent research and developments on wrought magnesium alloys, J. Magnesium Alloys, 5(2017), No. 3, p. 239. doi: 10.1016/j.jma.2017.09.001
|
[2] |
T.C. Xu, Y. Yang, X.D. Peng, J.F. Song, and F.S. Pan, Overview of advancement and development trend on magnesium alloy, J. Magnesium Alloys, 7(2019), No. 3, p. 536. doi: 10.1016/j.jma.2019.08.001
|
[3] |
J.F. Song, J. She, D.L. Chen, and F.S. Pan, Latest research advances on magnesium and magnesium alloys worldwide, J. Magnesium Alloys, 8(2020), No. 1, p. 1. doi: 10.1016/j.jma.2020.02.003
|
[4] |
J. Rong, W.L. Xiao, X.Q. Zhao, C.L. Ma, H.M. Liao, D.L. He, M. Chen, M. Huang, and C. Huang, High thermal conductivity and high strength magnesium alloy for high pressure die casting ultrathin-walled components, Int. J. Miner. Metall. Mater., 29(2022), No. 1, p. 88. doi: 10.1007/s12613-021-2318-y
|
[5] |
Y. Li, P.J. Hou, Z.G. Wu, Z.L. Feng, Y. Ren, and H. Choo, Dynamic recrystallization of a wrought magnesium alloy: Grain size and texture maps and their application for mechanical behavior predictions, Mater. Des., 202(2021), art. No. 109562. doi: 10.1016/j.matdes.2021.109562
|
[6] |
J. Denk, L. Whitmore, O. Huber, O. Diwald, and H. Saage, Concept of the highly strained volume for fatigue modeling of wrought magnesium alloys, Int. J. Fatigue, 117(2018), p. 283. doi: 10.1016/j.ijfatigue.2018.08.025
|
[7] |
Z.R. Zeng, M.Z. Bian, S.W. Xu, W.N. Tang, C. Davies, N. Birbilis, and J.F. Nie, Optimisation of alloy composition for highly-formable magnesium sheet, Int. J. Miner. Metall. Mater., 29(2022), No. 7, p. 1388. doi: doi.org/10.1007/s12613-021-2365-4
|
[8] |
J.C. Yu, B. Song, D.B. Xia, X. Zeng, Y.D. Huang, N. Hort, P.L. Mao, and Z. Liu, Dynamic tensile properties and microstructural evolution of extruded EW75 magnesium alloy at high strain rates, J. Magnesium Alloys, 8(2020), No. 3, p. 849. doi: 10.1016/j.jma.2020.02.013
|
[9] |
J. Wang, G.M. Zhu, L.Y. Wang, E. Vasilev, J.S. Park, G. Sha, X.Q. Zeng, and M. Knezevic, Origins of high ductility exhibited by an extruded magnesium alloy Mg–1.8Zn–0.2Ca: Experiments and crystal plasticity modeling, J. Mater. Sci. Technol., 84(2021), p. 27. doi: 10.1016/j.jmst.2020.12.047
|
[10] |
H. Jafari, A.H.M. Tehrani, and M. Heydari, Effect of extrusion process on microstructure and mechanical and corrosion properties of biodegradable Mg–5Zn–1.5Y magnesium alloy, Int. J. Miner. Metall. Mater., 29(2022), No. 3, p. 490. doi: 10.1007/s12613-021-2275-5
|
[11] |
M.E. Mehtedi, A. DOrazio, A. Forcellese, M. Pieralisi, and M. Simoncini, Effect of the rolling temperature on hot formability of ZAM100 magnesium alloy, Procedia CIRP, 67(2018), p. 493. doi: 10.1016/j.procir.2017.12.250
|
[12] |
Y. Wang, F. Li, N. Bian, H.Q. Du, and P. da Huo, Mechanism of plasticity enhancement of AZ31B magnesium alloy sheet by accumulative alternating back extrusion, J. Magnesium Alloys, (2021). DOI: 10.1016/j.jma.2021.08.035
|
[13] |
Z. Zhang, J.H. Zhang, J. Wang, Z.H. Li, J.S. Xie, S.J. Liu, K. Guan, and R.Z. Wu, Toward the development of Mg alloys with simultaneously improved strength and ductility by refining grain size via the deformation process, Int. J. Miner. Metall. Mater., 28(2021), No. 1, p. 30. doi: 10.1007/s12613-020-2190-1
|
[14] |
R.B. Mei, L. Bao, F. Huang, X. Zhang, X.W. Qi, and X.H. Liu, Simulation of the flow behavior of AZ91 magnesium alloys at high deformation temperatures using a piecewise function of constitutive equations, Mech. Mater., 125(2018), p. 110. doi: 10.1016/j.mechmat.2018.07.011
|
[15] |
A. Hadadzadeh and M.A. Wells, Analysis of the hot deformation of ZK60 magnesium alloy, J. Magnesium Alloys, 5(2017), No. 4, p. 369. doi: 10.1016/j.jma.2017.09.002
|
[16] |
J.C. Long, Q.X. Xia, G.F. Xiao, Y. Qin, and S. Yuan, Flow characterization of magnesium alloy ZK61 during hot deformation with improved constitutive equations and using activation energy maps, Int. J. Mech. Sci., 191(2021), art. No. 106069. doi: 10.1016/j.ijmecsci.2020.106069
|
[17] |
X.P. Zhang, H.X. Wang, L.P. Bian, S.X. Zhang, Y.P. Zhuang, W.L. Cheng, and W. Liang, Microstructure evolution and mechanical properties of Mg–9Al–1Si–1SiC composites processed by multi-pass equal-channel angular pressing at various temperatures, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1966. doi: 10.1007/s12613-020-2123-z
|
[18] |
H.M. Wang, P.D. Wu, S. Kurukuri, M.J. Worswick, Y.H. Peng, D. Tang, and D.Y. Li, Strain rate sensitivities of deformation mechanisms in magnesium alloys, Int. J. Plast., 107(2018), p. 207. doi: 10.1016/j.ijplas.2018.04.005
|
[19] |
H. Wang, X. Sun, S. Kurukuri, M.J. Worswick, D.Y. Li, Y.H. Peng, and P.D. Wu, The strain rate sensitive and anisotropic behavior of rare-earth magnesium alloy ZEK100 sheet, J. Magnesium Alloys, (2021). DOI: 10.1016/j.jma.2021.06.010
|
[20] |
L. Li, O. Muránsky, E.A. Flores-Johnson, S. Kabra, L.M. Shen, and G. Proust, Effects of strain rate on the microstructure evolution and mechanical response of magnesium alloy AZ31, Mater. Sci. Eng. A, 684(2017), p. 37. doi: 10.1016/j.msea.2016.12.015
|
[21] |
E. Karimi, A. Zarei-Hanzaki, M.H. Pishbin, H.R. Abedi, and P. Changizian, Instantaneous strain rate sensitivity of wrought AZ31 magnesium alloy, Mater. Des., 49(2013), p. 173. doi: 10.1016/j.matdes.2013.01.068
|
[22] |
Z.W. Cai, F.X. Chen, and J.Q. Guo, Constitutive model for elevated temperature flow stress of AZ41M magnesium alloy considering the compensation of strain, J. Alloys Compd., 648(2015), p. 215. doi: 10.1016/j.jallcom.2015.06.257
|
[23] |
A.S. Khan, A. Pandey, T. Gnäupel-Herold, and R.K. Mishra, Mechanical response and texture evolution of AZ31 alloy at large strains for different strain rates and temperatures, Int. J. Plast., 27(2011), No. 5, p. 688. doi: 10.1016/j.ijplas.2010.08.009
|
[24] |
G.Z. Kang and H. Li, Review on cyclic plasticity of magnesium alloys: Experiments and constitutive models, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 567. doi: 10.1007/s12613-020-2216-8
|
[25] |
V.S. Hristov and K. Yoshida, Effects of chemical composition on drawability and mechanical properties of magnesium alloy wires, Procedia Manuf., 15(2018), p. 341. doi: 10.1016/j.promfg.2018.07.228
|
[26] |
L.Y. Jiang, W.J. Huang, D.F. Zhang, F. Guo, H.S. Xue, J.Y. Xu, and F.S. Pan, Effect of Sn on the microstructure evolution of AZ80 magnesium alloy during hot compression, J. Alloys Compd., 727(2017), p. 205. doi: 10.1016/j.jallcom.2017.07.225
|
[27] |
S. Asqardoust, A. Zarei-Hanzaki, S.M. Fatemi, and M. Moradjoy-Hamedani, High temperature deformation behavior and microstructural evolutions of a high Zr containing WE magnesium alloy, J. Alloys Compd., 669(2016), p. 108. doi: 10.1016/j.jallcom.2016.01.232
|
[28] |
J.L. Zhang, H. Xie, Z.L. Lu, Y. Ma, S.P. Tao, and K. Zhao, Microstructure evolution and mechanical properties of AZ80 magnesium alloy during high-pass multi-directional forging, Results Phys., 10(2018), p. 967. doi: 10.1016/j.rinp.2018.08.028
|
[29] |
G.L. Shi, K. Zhang, X.G. Li, Y.J. Li, M.L. Ma, J.W. Yuan, and H.J. Zhang, Dislocation configuration evolution during extension twinning and its influence on precipitation behavior in AZ80 wrought magnesium alloy, J. Magnesium Alloys, (2021). DOI: 10.1016/j.jma.2021.08.032
|
[30] |
L. Luo, Z.Y. Xiao, Q.H. Huo, Y. Yang, W.Y. Huang, J.C. Guo, Y.X. Ye, and X.Y. Yang, Enhanced mechanical properties of a hot-extruded AZ80 Mg alloy rod by pre-treatments and post-hot compression, J. Alloys Compd., 740(2018), p. 180. doi: 10.1016/j.jallcom.2017.12.296
|
[31] |
X. Song, L. Wang, and Y. Liu, A review of the strengthening—Toughening behavior and mechanisms of advanced structural materials by multifield coupling treatment, Int. J. Miner. Metall. Mater., 29(2022), No. 2, p. 185. doi: 10.1007/s12613-021-2350-y
|
[32] |
Z.M. Du, D.Y. Wang, and H.J. Zhang, Influence of hot extrusion process on microstructure and mechanical properties of Mg–Zn–Y–Zr magnesium alloy, Rare Met. Mater. Eng., 47(2018), No. 6, p. 1655. doi: 10.1016/S1875-5372(18)30146-2
|
[33] |
Z.J. Zhang, L. Yuan, D.B. Shan, and B. Guo, The quantitative effects of temperature and cumulative strain on the mechanical properties of hot-extruded AZ80 Mg alloy during multi-directional forging, Mater. Sci. Eng. A, 827(2021), art. No. 142036. doi: 10.1016/j.msea.2021.142036
|
[34] |
X. Zhao, P.C. Gao, G. Chen, J.F. Wei, Z. Zhu, F.F. Yan, Z.M. Zhang, and Q. Wang, Effects of aging treatments on low-cycle fatigue behavior of extruded AZ80 for automobile wheel disks, Mater. Sci. Eng. A, 799(2021), art. No. 140366. doi: 10.1016/j.msea.2020.140366
|
[35] |
Z.X. Su, L. Wan, C.Y. Sun, Y. Cai, and D.J. Yang, Hot deformation behavior of AZ80 magnesium alloy towards optimization of its hot workability, Mater. Charact., 122(2016), p. 90. doi: 10.1016/j.matchar.2016.10.026
|
[36] |
Y. Cai, L. Wan, Z.H. Guo, C.Y. Sun, D.J. Yang, Q.D. Zhang, and Y.L. Li, Hot deformation characteristics of AZ80 magnesium alloy: Work hardening effect and processing parameter sensitivities, Mater. Sci. Eng. A, 687(2017), p. 113. doi: 10.1016/j.msea.2017.01.057
|
[37] |
P. Prakash, D. Toscano, S.K. Shaha, M.A. Wells, H. Jahed, and B.W. Williams, Effect of temperature on the hot deformation behavior of AZ80 magnesium alloy, Mater. Sci. Eng. A, 794(2020), art. No. 139923. doi: 10.1016/j.msea.2020.139923
|
[38] |
Q. Tang, M.Y. Zhou, L.L. Fan, Y. Zhang, G.F. Quan, and B. Liu, Constitutive behavior of AZ80 M magnesium alloy compressed at elevated temperature and containing a small fraction of liquid, Vacuum, 155(2018), p. 476. doi: 10.1016/j.vacuum.2018.06.053
|
[39] |
C. Wang, T.J. Luo, and Y.S. Yang, Low cycle fatigue behavior of the extruded AZ80 magnesium alloy under different strain amplitudes and strain rates, J. Magnesium Alloys, 4(2016), No. 3, p. 181. doi: 10.1016/j.jma.2016.07.002
|
[40] |
G. Chen, S. Zhang, H.M. Zhang, F. Han, G. Wang, Q. Chen, and Z.D. Zhao, Controlling liquid segregation of semi-solid AZ80 magnesium alloy by back pressure thixoextruding, J. Mater. Process. Technol., 259(2018), p. 88. doi: 10.1016/j.jmatprotec.2018.04.023
|
[41] |
Y. Li, H.X. Li, L. Katgerman, Q. Du, J.S. Zhang, and L.Z. Zhuang, Recent advances in hot tearing during casting of aluminium alloys, Prog. Mater. Sci., 117(2021), art. No. 100741. doi: 10.1016/j.pmatsci.2020.100741
|
[42] |
J.F. Song, F.S. Pan, B. Jiang, A. Atrens, M.X. Zhang, and Y. Lu, A review on hot tearing of magnesium alloys, J. Magnesium Alloys, 4(2016), No. 3, p. 151. doi: 10.1016/j.jma.2016.08.003
|
[43] |
F. D’Elia, C. Ravindran, D. Sediako, K.U. Kainer, and N. Hort, Hot tearing mechanisms of B206 aluminum-copper alloy, Mater. Des., 64(2014), p. 44. doi: 10.1016/j.matdes.2014.07.024
|
[44] |
F.S. Pan, Z.X. Feng, X.Y. Zhang, and A.T. Tang, The types and distribution characterization of Al-Mn phases in the AZ61 magnesium alloy, Procedia Eng., 27(2012), p. 833. doi: 10.1016/j.proeng.2011.12.528
|
[45] |
T. Chen, Y. Yuan, T.T. Liu, D.J. Li, A.T. Tang, X.H. Chen, R. Schmid-Fetzer, and F.S. Pan, Effect of Mn addition on melt purification and Fe tolerance in Mg alloys, JOM, 73(2021), No. 3, p. 892. doi: 10.1007/s11837-020-04550-5
|
[46] |
G. Zeng, J.W. Xian, and C.M. Gourlay, Nucleation and growth crystallography of Al8Mn5 on B2-Al(Mn, Fe) in AZ91 magnesium alloys, Acta Mater., 153(2018), p. 364. doi: 10.1016/j.actamat.2018.04.032
|
[47] |
L. Peng, G. Zeng, J. Xian, and C.M. Gourlay, Al–Mn–Fe intermetallic formation in AZ91 magnesium alloys: Effects of impurity iron, Intermetallics, 142(2022), art. No. 107465. doi: 10.1016/j.intermet.2022.107465
|
[48] |
T.W. Clyne and G.J. Davies, The influence of composition on solidification cracking susceptibility in binary alloys, Br. Foundryman, 74(1981), No. 4, p. 65.
|
[49] |
M.H. Ghoncheh, S.G. Shabestari, A. Asgari, and M. Karimzadeh, Nonmechanical criteria proposed for prediction of hot tearing sensitivity in 2024 aluminum alloy, Trans. Nonferrous Met. Soc. China, 28(2018), No. 5, p. 848. doi: 10.1016/S1003-6326(18)64718-1
|
[50] |
G.J. Zhang, Y. Wang, Z. Liu, and S.M. Liu, Influence of Al addition on solidification path and hot tearing susceptibility of Mg–2Zn–(3 + 0.5x)Y–xAl alloys, J. Magnesium Alloys, 7(2019), No. 2, p. 272. doi: 10.1016/j.jma.2019.04.001
|