Cite this article as:

Huadong Fu, Hongtao Zhang, Changsheng Wang, Wei Yong, and Jianxin Xie, Recent progress in the machine learning-assisted rational design of alloys, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp.635-644. https://dx.doi.org/10.1007/s12613-022-2458-8
Huadong Fu, Hongtao Zhang, Changsheng Wang, Wei Yong, and Jianxin Xie, Recent progress in the machine learning-assisted rational design of alloys, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp.635-644. https://dx.doi.org/10.1007/s12613-022-2458-8
引用本文 PDF XML SpringerLink

机器学习辅助合金理性设计研究进展

摘要: 基于经验的传统“试错法”金属材料设计存在试错周期长、成本高等问题,大数据和人工智能技术的快速发展,为金属材料高效研发提供了新的途径—机器学习模型预测辅助材料设计。本文介绍了机器学习辅助金属材料理性设计的基本策略,重点综述了面向性能需求的合金成分逆向设计、基于合金元素物理化学特征或材料组织结构特征建模的合金成分选择设计、基于迭代反馈优化的合金成分和工艺参数优化设计三方面的研究进展,展望了机器学习辅助金属材料理性设计的未来发展趋势。

 

Recent progress in the machine learning-assisted rational design of alloys

Abstract: Alloys designed with the traditional trial and error method have encountered several problems, such as long trial cycles and high costs. The rapid development of big data and artificial intelligence provides a new path for the efficient development of metallic materials, that is, machine learning-assisted design. In this paper, the basic strategy for the machine learning-assisted rational design of alloys was introduced. Research progress in the property-oriented reversal design of alloy composition, the screening design of alloy composition based on models established using element physical and chemical features or microstructure factors, and the optimal design of alloy composition and process parameters based on iterative feedback optimization was reviewed. Results showed the great advantages of machine learning, including high efficiency and low cost. Future development trends for the machine learning-assisted rational design of alloys were also discussed. Interpretable modeling, integrated modeling, high-throughput combination, multi-objective optimization, and innovative platform building were suggested as fields of great interest.

 

/

返回文章
返回