留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 30 Issue 2
Feb.  2023

图(16)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  538
  • HTML全文浏览量:  147
  • PDF下载量:  37
  • 被引次数: 0
Sheng Li, Yimin Zhang, Yizhong Yuan, and Pengcheng Hu, An insight on the mechanism of efficient leaching of vanadium from vanadium shale induced by microwave-generated hot spots, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 293-302. https://doi.org/10.1007/s12613-022-2459-7
Cite this article as:
Sheng Li, Yimin Zhang, Yizhong Yuan, and Pengcheng Hu, An insight on the mechanism of efficient leaching of vanadium from vanadium shale induced by microwave-generated hot spots, Int. J. Miner. Metall. Mater., 30(2023), No. 2, pp. 293-302. https://doi.org/10.1007/s12613-022-2459-7
引用本文 PDF XML SpringerLink
研究论文

微波热点诱导钒页岩高效浸出提钒机理的新见解

  • 通讯作者:

    张一敏    E-mail: zym126135@126.com

文章亮点

  • (1) 比较了两种加热方式下钒浸出行为。
  • (2) 研究了微波场下钒页岩的电场和温度分布。
  • (3) 揭示了高温热点对钒页岩矿物结构的影响。
  • (4) 阐明了微波强化浸出钒的机理。
  • 微波加热可以快速均匀地提高温度并加快反应速度。本文采用微波加热强化酸浸过程,并通过微观形貌分析和COMSOL Multiphysics软件的数值模拟研究了微波辅助浸出的强化机理。研究了微波功率、浸出温度、CaF2用量、H2SO4浓度和浸出时间对钒浸出率的影响。在微波功率为550 W、浸出温度为95°C、CaF2用量为5wt%、H2SO4浓度为20vol%、浸出时间为2.5 h的条件下,钒浸出率为80.66%,相比于常规加热浸出,浸出率提升了6.18%;同等浸出率的水平下浸出时间可以缩短9.5 h。SEM和XRD分析表明,微波加热可以细化矿物颗粒尺寸,使得钒页岩颗粒的活性表面暴露于浸出液中,从而加速反应速率。同时,微波辅助浸出后云母矿物的层状结构被剥落,有利于钒的释放。数值模拟结果表明,钒页岩颗粒中的电场强度和温度随着介质中介电常数的增加而降低;钒页岩颗粒之间的电场和温度分布相对均匀,但电场强度在颗粒接触位置处激增,该处的温度也随之激增,从而形成高温热点。此外,随着钒页岩颗粒聚集的增加,电场强度和温度在不同程度地增加。验证实验和浸出实验的结果表明,微波辅助浸出过程中存在高温热点,高温热点破坏了矿物结构,细化了矿物的粒度,并剥离了云母的层状结构。随着含钒矿物暴露表面的增加,氢离子与活性位点之间的碰撞频率增加,反应速率增加,浸出时间缩短。
  • Research Article

    An insight on the mechanism of efficient leaching of vanadium from vanadium shale induced by microwave-generated hot spots

    + Author Affiliations
    • Microwave heating can rapidly and uniformly raise the temperature and accelerate the reaction rate. In this paper, microwave heating was used to improve the acid leaching, and the mechanism was investigated via microscopic morphology analysis and numerical simulation by COMSOL Multiphysics software. The effects of the microwave power, leaching temperature, CaF2 dosage, H2SO4 concentration, and leaching time on the vanadium recovery were investigated. A vanadium recovery of 80.66% is obtained at a microwave power of 550 W, leaching temperature of 95°C, CaF2 dosage of 5wt%, H2SO4 concentration of 20vol%, and leaching time of 2.5 h. Compared with conventional leaching technology, the vanadium recovery increases by 6.18%, and the leaching time shortens by 79.17%. More obvious pulverization of shale particles and delamination of mica minerals happen in the microwave-assisted leaching process. Numerical simulation results show that the temperature of vanadium shales increases with an increase in electric field (E-field). The distributions of E-field and temperature among vanadium shale particles are relatively uniform, except for the higher content at the contact position of the particles. The analysis results of scale-up experiments and leaching experiments indicate high-temperature hot spots in the process of microwave-assisted leaching, and the local high temperature destroys the mineral structure and accelerates the reaction rate.
    • loading
    • [1]
      Y.M. Zhang, S.X. Bao, T. Liu, T.J. Chen, and J. Huang, The technology of extracting vanadium from stone coal in China: History, current status and future prospects, Hydrometallurgy, 109(2011), No. 1-2, p. 116. doi: 10.1016/j.hydromet.2011.06.002
      [2]
      J.P. Gustafsson, Vanadium geochemistry in the biogeosphere-speciation, solid-solution interactions, and ecotoxicity, Appl. Geochem., 102(2019), p. 1. doi: 10.1016/j.apgeochem.2018.12.027
      [3]
      E. del Carpio, L. Hernández, C. Ciangherotti, et al., Vanadium: History, chemistry, interactions with α-amino acids and potential therapeutic applications, Coord. Chem. Rev., 372(2018), p. 117. doi: 10.1016/j.ccr.2018.06.002
      [4]
      P.C. Hu, Y.M. Zhang, T. Liu, J. Huang, Y.Z. Yuan, and Q.S. Zheng, Highly selective separation of vanadium over iron from stone coal by oxalic acid leaching, J. Ind. Eng. Chem., 45(2017), p. 241. doi: 10.1016/j.jiec.2016.09.029
      [5]
      B. Chen, S.X. Bao, Y.M. Zhang, and S. Li, A high-efficiency and sustainable leaching process of vanadium from shale in sulfuric acid systems enhanced by ultrasound, Sep. Purif. Technol., 240(2020), art. No. 116624. doi: 10.1016/j.seppur.2020.116624
      [6]
      Y.Z. Yuan, Y.M. Zhang, T. Liu, P.C. Hu, and Q.S. Zheng, Optimization of microwave roasting-acid leaching process for vanadium extraction from shale via response surface methodology, J. Cleaner. Prod., 234(2019), p. 494. doi: 10.1016/j.jclepro.2019.06.271
      [7]
      Y.Z. Yuan, Y.M. Zhang, T. Liu, T.J. Chen, and J. Huang, Source separation of V and Fe by two-stage selective leaching during V extraction from stone coal, RSC Adv., 7(2017), No. 30, p. 18438. doi: 10.1039/C7RA01154G
      [8]
      B. Chen, S.X. Bao, and Y.M. Zhang, Synergetic strengthening mechanism of ultrasound combined with calcium fluoride towards vanadium extraction from low-grade vanadium-bearing shale, Int. J. Min. Sci. Technol., 31(2021), No. 6, p. 1095. doi: 10.1016/j.ijmst.2021.07.008
      [9]
      M.T. Li, C. Wei, G. Fan, H.L. Wu, C.X. Li, and X.B. Li, Acid leaching of black shale for the extraction of vanadium, Int. J. Miner. Process., 95(2010), No. 1-4, p. 62. doi: 10.1016/j.minpro.2010.04.002
      [10]
      M.Y. Wang, L.S. Xiao, Q.G. Li, X.W. Wang, and X.Y. Xiang, Leaching of vanadium from stone coal with sulfuric acid, Rare Met., 28(2009), No. 1, p. 1. doi: 10.1007/s12598-009-0001-y
      [11]
      B. Zhang, Z.G. Gao, H.Z. Liu, W. Wang, and Y.H. Cao, Direct acid leaching of vanadium from stone coal, High Temp. Mater. Process., 36(2017), No. 9, p. 877. doi: 10.1515/htmp-2016-0055
      [12]
      X.Y. Zhang, K. Yang, X.D. Tian, and W.Q. Qin, Vanadium leaching from carbonaceous shale using fluosilicic acid, Int. J. Miner. Process., 100(2011), No. 3-4, p. 184. doi: 10.1016/j.minpro.2011.04.013
      [13]
      A.M. Elmahdy, M. Farahat, and T. Hirajima, Comparison between the effect of microwave irradiation and conventional heat treatments on the magnetic properties of chalcopyrite and pyrite, Adv. Powder Technol., 27(2016), No. 6, p. 2424. doi: 10.1016/j.apt.2016.08.020
      [14]
      Z. Moravvej, A. Mohebbi, and S. Daneshpajouh, The microwave irradiation effect on copper leaching from sulfide/oxide ores, Mater. Manuf. Process., 33(2018), No. 1, p. 1. doi: 10.1080/10426914.2016.1244850
      [15]
      T. Le, X.T. Li, A.V. Ravindra, Q. Wang, J.H. Peng, and S.H. Ju, Leaching behavior of contaminant metals from spent FCC catalyst under microwave irradiation, Mater. Res. Express, 6(2018), No. 3, art. No. 035509. doi: 10.1088/2053-1591/aaf529
      [16]
      L. Guo, J.R. Lan, Y.G. Du, T.C. Zhang, and D.Y. Du, Microwave-enhanced selective leaching of arsenic from copper smelting flue dusts, J. Hazard. Mater., 386(2020), art. No. 121964. doi: 10.1016/j.jhazmat.2019.121964
      [17]
      T. Wen, Y.L. Zhao, Q.H. Xiao, et al., Effect of microwave-assisted heating on chalcopyrite leaching of kinetics, interface temperature and surface energy, Results Phys., 7(2017), p. 2594. doi: 10.1016/j.rinp.2017.07.035
      [18]
      L.Y. Zhang, J.M. Mo, X.H. Li, L.P. Pan, and G.T. Wei, Leaching reaction and kinetics of zinc from indium-bearing zinc ferrite under microwave heating, Russ. J. Non-Ferrous Met., 57(2016), No. 4, p. 301. doi: 10.3103/S1067821216040143
      [19]
      J.P. Wang, Y.M. Zhang, J. Huang, and T. Liu, Synergistic effect of microwave irradiation and CaF2 on vanadium leaching, Int. J. Miner. Metall. Mater., 24(2017), No. 2, p. 156. doi: 10.1007/s12613-017-1390-9
      [20]
      J.P. Wang, Y.M. Zhang, J. Huang, and T. Liu, Efficient microwave irradiation-assisted hydrothermal synthesis of ammonium vanadate flake, Cryst. Res. Technol., 52(2017), No. 12, art. No. 1700104. doi: 10.1002/crat.201700104
      [21]
      X. Qiao and X.Y. Xie, The effect of electric field intensification at interparticle contacts in microwave sintering, Sci. Reports, 6(2016), art. No. 32163. doi: 10.1038/srep32163
      [22]
      T. Ebadzadeh, Effect of mechanical activation and microwave heating on synthesis and sintering of nano-structured mullite, J. Alloys Compd., 489(2010), No. 1, p. 125. doi: 10.1016/j.jallcom.2009.09.030
      [23]
      X.F. Zhang, F.G. Liu, X.X. Xue, and T. Jiang, Effects of microwave and conventional blank roasting on oxidation behavior, microstructure and surface morphology of vanadium slag with high chromium content, J. Alloys Compd., 686(2016), p. 356. doi: 10.1016/j.jallcom.2016.06.038
      [24]
      A.J. Teng and X.X. Xue, A novel roasting process to extract vanadium and chromium from high chromium vanadium slag using a NaOH–NaNO3 binary system, J. Hazard. Mater, 379(2019), art. No. 120805. doi: 10.1016/j.jhazmat.2019.120805
      [25]
      H.Y. Gao, T. Jiang, M. Zhou, J. Wen, X. Li, Y. Wang, and X.X. Xue, Effect of microwave irradiation and conventional calcification roasting with calcium hydroxide on the extraction of vanadium and chromium from high-chromium vanadium slag, Miner. Eng., 145(2020), art. No. 106056. doi: 10.1016/j.mineng.2019.106056
      [26]
      Y.Z. Yuan, Y.M. Zhang, T. Liu, T.J. Chen, and J. Huang, Comparison of microwave and conventional blank roasting and of their effects on vanadium oxidation in stone coal, J. Microwave Power Electromagn. Energy, 50(2016), No. 2, p. 81. doi: 10.1080/08327823.2016.1190145
      [27]
      Y.Z. Yuan, Y.M. Zhang, T. Liu, and T.J. Chen, Comparison of the mechanisms of microwave roasting and conventional roasting and of their effects on vanadium extraction from stone coal, Int. J. Miner. Metall. Mater., 22(2015), No. 5, p. 476. doi: 10.1007/s12613-015-1096-9
      [28]
      E.A. Olevsky, A.L. Maximenko, and E.G. Grigoryev, Ponderomotive effects during contact formation in microwave sintering, Modelling Simul. Mater. Sci. Eng., 21(2013), No. 5, art. No. 055022. doi: 10.1088/0965-0393/21/5/055022
      [29]
      K.I. Rybakov, E.A. Olevsky, and V.E. Semenov, The microwave ponderomotive effect on ceramic sintering, Scripta Mater., 66(2012), No. 12, p. 1049. doi: 10.1016/j.scriptamat.2012.02.043
      [30]
      S.A. Freeman, J.H. Booske, and R.F. Cooper, Microwave field enhancement of charge transport in sodium chloride, Phys. Rev. Lett., 74(1995), No. 11, p. 2042. doi: 10.1103/PhysRevLett.74.2042
      [31]
      D. Demirskyi, D. Agrawal, and A. Ragulya, Neck growth kinetics during microwave sintering of copper, Scripta Mater., 62(2010), No. 8, p. 552. doi: 10.1016/j.scriptamat.2009.12.036
      [32]
      X. Wang, D.J. Yang, C. Srinivasakannan, J.H. Peng, X.H. Duan, and S.H. Ju, A comparison of the conventional and ultrasound-augmented leaching of zinc residue using sulphuric acid, Arab. J. Sci. Eng., 39(2014), No. 1, p. 163. doi: 10.1007/s13369-013-0835-3
      [33]
      J.Y. Xiang, Q.Y. Huang, X.W. Lv, and C.G. Bai, Extraction of vanadium from converter slag by two-step sulfuric acid leaching process, J. Clean. Prod., 170(2018), p. 1089. doi: 10.1016/j.jclepro.2017.09.255
      [34]
      J.Y. Xiang, Q.Y. Huang, X.W. Lv, and C.G. Bai, Effect of mechanical activation treatment on the recovery of vanadium from converter slag, Metall. Mater. Trans. B, 48(2017), No. 5, p. 2759. doi: 10.1007/s11663-017-1033-6
      [35]
      Q.W. Yang, Z.M. Xie, H. Peng, Z.H. Liu, and C.Y. Tao, Leaching of vanadium and chromium from converter vanadium slag intensified with surface wettability, J. Central South Univ., 25(2018), No. 6, p. 1317. doi: 10.1007/s11771-018-3828-2
      [36]
      J.P. Wang, Y.M. Zhang, J. Huang, and T. Liu, Kinetic and mechanism study of vanadium acid leaching from black shale using microwave heating method, JOM, 70(2018), No. 6, p. 1031. doi: 10.1007/s11837-018-2859-3
      [37]
      F. Wang, Y.M. Zhang, J. Huang, et al., Mechanisms of aid-leaching reagent calcium fluoride in the extracting vanadium processes from stone coal, Rare Met., 32(2013), No. 1, p. 57. doi: 10.1007/s12598-013-0013-5
      [38]
      J. Sun, W.L. Wang, Q.Y. Yue, et al., Review on microwave-metal discharges and their applications in energy and industrial processes, Appl. Energy, 175(2016), p. 141. doi: 10.1016/j.apenergy.2016.04.091
      [39]
      J.Y. Zhu, L.P. Yi, Z.Z. Yang, and M. Duan, Three-dimensional numerical simulation on the thermal response of oil shale subjected to microwave heating, Chem. Eng. J., 407(2021), art. No. 127197. doi: 10.1016/j.cej.2020.127197

    Catalog


    • /

      返回文章
      返回