Cite this article as:

Xiaoyuan Yuan, Yuan Wu, Xiongjun Liu, Hui Wang, Suihe Jiang, and Zhaoping Lü, Revealing the role of local shear strain partition of transformable particles in a TRIP-reinforced bulk metallic glass composite via digital image correlation, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp.807-813. https://dx.doi.org/10.1007/s12613-022-2460-1
Xiaoyuan Yuan, Yuan Wu, Xiongjun Liu, Hui Wang, Suihe Jiang, and Zhaoping Lü, Revealing the role of local shear strain partition of transformable particles in a TRIP-reinforced bulk metallic glass composite via digital image correlation, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp.807-813. https://dx.doi.org/10.1007/s12613-022-2460-1
引用本文 PDF XML SpringerLink

通过数字图像相关技术揭示在TRIP增强块体金属玻璃复合材料中可变形颗粒的局部剪切应变分配的作用

摘要: 采用数字图像相关(digital image correlation, DIC)技术研究了形变诱导塑性(transformation-induced plasticity, TRIP)增强的块体金属玻璃(bulk metallic glass, BMG)复合材料中亚稳奥氏体晶相与非晶基体在压缩载荷下的耦合效应。通过DIC的动态记录的特性,直接监测了晶体相和非晶态基体中局部应变场的演化。通过对局部应变场的分析和计算,揭示了亚稳态奥氏体相变对TRIP增强BMG复合材料的贡献。在变形过程中,亚稳态奥氏体优先于非晶基体相变形,且应力导致的亚稳态奥氏体的马氏体相变能有效地消耗局部剪切应变,使晶体相和非晶相的界面处的局部应变/应力集中得到缓解,延缓了变形过程中界面处裂纹的萌生和拓展,从而大大提高了TRIP增强BMG复合材料的塑性和加工硬化能力。我们的研究有助于深入理解变形过程中非晶基体和亚稳晶体相之间的相互作用机制,为进一步提升BMG复合材料的性能设计提供依据。

 

Revealing the role of local shear strain partition of transformable particles in a TRIP-reinforced bulk metallic glass composite via digital image correlation

Abstract: The coupling effects of the metastable austenitic phase and the amorphous matrix in a transformation-induced plasticity (TRIP)-reinforced bulk metallic glass (BMG) composite under compressive loading were investigated by employing the digital image correlation (DIC) technique. The evolution of local strain field in the crystalline phase and the amorphous matrix was directly monitored, and the contribution from the phase transformation of the metastable austenitic phase was revealed. Local shear strain was found to be effectively consumed by the displacive phase transformation of the metastable austenitic phase, which relaxed the local strain/stress concentration at the interface and thus greatly enhanced the plasticity of the TRIP-reinforced BMG composites. Our current study sheds light on in-depth understanding of the underlying deformation mechanism and the interplay between the amorphous matrix and the metastable crystalline phase during deformation, which is helpful for design of advanced BMG composites with further improved properties.

 

/

返回文章
返回