留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 11
Nov.  2022

图(4)  / 表(1)

数据统计

分享

计量
  • 文章访问数:  715
  • HTML全文浏览量:  284
  • PDF下载量:  32
  • 被引次数: 0
Weiqiang Hu, Fengming Gong, Shaocun Liu, Jing Tan, Songhua Chen, Hui Wang, and Zongqing Ma, Microstructure refinement and second phase particle regulation of Mo–Y2O3 alloys by minor TiC additive, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp. 2012-2019. https://doi.org/10.1007/s12613-022-2462-z
Cite this article as:
Weiqiang Hu, Fengming Gong, Shaocun Liu, Jing Tan, Songhua Chen, Hui Wang, and Zongqing Ma, Microstructure refinement and second phase particle regulation of Mo–Y2O3 alloys by minor TiC additive, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp. 2012-2019. https://doi.org/10.1007/s12613-022-2462-z
引用本文 PDF XML SpringerLink
研究论文

微量TiC掺杂对Mo–Y2O3合金组织的细化和第二相粒子的调控

  • 通讯作者:

    马宗青    E-mail: mzq0320@163.com

文章亮点

  • (1) 研究了Y2O3和TiC复合掺杂对Mo–Y2O3合金微观组织、性能的影响。
  • (2) 揭示了Y2O3和TiC复合掺杂能细化基体和第二相的机理。
  • (3) 基于第二相成分提出了一个基体净化和强化的理论。
  • 氧化物弥散强化的钼合金具有很多优异的力学性能,在高温合金领域具有很大的吸引力。然而传统球磨及后续烧结工艺制备的氧化物弥散强化Mo合金(ODS-Mo)的Mo晶粒较粗,Mo晶界处的氧化物颗粒也较大,这明显抑制了氧化物加入的强化效果。在这项工作中,我们通过球磨和随后的低温烧结,将Y2O3和TiC颗粒同时掺杂到Mo合金中。随着TiC的加入,Mo–Y2O3晶粒由3.12 μm急剧细化到1.36 μm。特别是,与单独掺杂的Y2O3颗粒(~420 nm)相比,共掺杂的Y2O3和TiC在Mo晶界上能形成更小的Y–Ti–O–C第四相颗粒(~230 nm),从而能更有效地固定和阻碍晶界的运动。除了晶界上的Y–Ti–O–C颗粒外,Mo颗粒中还存在Y2O3、TiOx和TiCx纳米颗粒(<100 nm),这与传统的ODS-Mo有显著不同。TiOx相的出现表明,TiC中的一些活性Ti吸附Mo基体中的氧杂质形成新的强化相,从而对Mo基体进行强化和净化。纯Mo、Mo–Y2O3和Mo–Y2O3– TiC合金具有相似的相对密度(97.4%–98.0%)。更重要的是,Mo–Y2O3–TiC合金的硬度(HV0.2 (425 ± 25))高于Mo–Y2O3合金(HV0.2 (370 ± 25))。本研究为球磨法制备超细Mo合金提供了相关的策略。
  • Research Article

    Microstructure refinement and second phase particle regulation of Mo–Y2O3 alloys by minor TiC additive

    + Author Affiliations
    • The oxide dispersion strengthened Mo alloys (ODS-Mo) prepared by traditional ball milling and subsequent sintering technique generally possess comparatively coarse Mo grains and large oxide particles at Mo grain boundaries (GBs), which obviously suppress the corresponding strengthening effect of oxide addition. In this work, the Y2O3 and TiC particles were simultaneously doped into Mo alloys using ball-milling and subsequent low temperature sintering. Accompanied by TiC addition, the Mo–Y2O3 grains are sharply refined from 3.12 to 1.36 μm. In particular, Y2O3 and TiC can form smaller Y–Ti–O–C quaternary phase particles (~230 nm) at Mo GBs compared to single Y2O3 particles (~420 nm), so as to these new formed Y–Ti–O–C particles can more effectively pin and hinder GBs movement. In addition to Y–Ti–O–C particles at GBs, Y2O3, TiOx, and TiCx nanoparticles (<100 nm) also exist within Mo grains, which is significantly different from traditional ODS-Mo. The appearance of TiOx phase indicates that some active Ti within TiC can adsorb oxygen impurities of Mo matrix to form a new strengthening phase, thus strengthening and purifying Mo matrix. Furthermore, the pure Mo, Mo–Y2O3, and Mo–Y2O3–TiC alloys have similar relative densities (97.4%–98.0%). More importantly, the Mo–Y2O3–TiC alloys exhibit higher hardness (HV0.2 (425 ± 25)) compared to Mo–Y2O3 alloys (HV0.2 (370 ± 25)). This work could provide a relevant strategy for the preparation of ultrafine Mo alloys by facile ball-milling.
    • loading
    • [1]
      Y.C. Zhou, Y.M. Gao, S.Z. Wei, K.M. Pan, and Y.J. Hu, Preparation and characterization of Mo/Al2O3 composites, Int. J. Refract. Met. Hard Mater., 54(2016), p. 186. doi: 10.1016/j.ijrmhm.2015.07.033
      [2]
      P.M. Cheng, G.J. Zhang, J.Y. Zhang, G. Liu, and J. Sun, Coupling effect of intergranular and intragranular particles on ductile fracture of Mo–La2O3 alloys, Mater. Sci. Eng. A, 640(2015), p. 320. doi: 10.1016/j.msea.2015.05.032
      [3]
      P.M. Cheng, Z.J. Zhang, G.J. Zhang, et al., Low cycle fatigue behaviors of pure Mo and Mo–La2O3 alloys, Mater. Sci. Eng. A, 707(2017), p. 295. doi: 10.1016/j.msea.2017.09.064
      [4]
      X. Chen, B. Li, T. Wang, et al., Strengthening mechanisms of Mo–La2O3 alloys processed by solid–solid doping and vacuum hot-pressing sintering, Vacuum, 152(2018), p. 70. doi: 10.1016/j.vacuum.2018.03.012
      [5]
      C.P. Cui, X.W. Zhu, Q. Li, M. Zhang, G.P. Zhu, and S.L. Liu, Study on high temperature strengthening mechanism of ZrO2/Mo alloys, J. Alloys Compd., 829(2020), art. No. 154630. doi: 10.1016/j.jallcom.2020.154630
      [6]
      C.P. Cui, X.W. Zhu, S.L. Liu, and Q. Li, Effect of nano-sized ZrO2 on the recrystallization of Mo alloy, J. Alloys Compd., 752(2018), p. 308. doi: 10.1016/j.jallcom.2018.04.155
      [7]
      W.Q. Hu, L. Wang, Z.Q. Ma, L.M. Yu, and Y.C. Liu, Nano Mo–La–O particles strengthened Mo alloys fabricated via freeze-drying technology and low temperature sintering, Mater. Sci. Eng. A, 818(2021), art. No. 141448. doi: 10.1016/j.msea.2021.141448
      [8]
      C.P. Cui, Y.M. Gao, S.Z. Wei, G.S. Zhang, Y.C. Zhou, and X.W. Zhu, Microstructure and high temperature deformation behavior of the Mo–ZrO2 alloys, J. Alloys Compd., 716(2017), p. 321. doi: 10.1016/j.jallcom.2017.05.013
      [9]
      W.Q. Hu, T. Sun, C.X. Liu, L.M. Yu, T. Ahamad, and Z.Q. Ma, Refined microstructure and enhanced mechanical properties in Mo–Y2O3 alloys prepared by freeze-drying method and subsequent low temperature sintering, J. Mater. Sci. Technol., 88(2021), p. 36. doi: 10.1016/j.jmst.2021.01.064
      [10]
      S. Chen, W.Q. Li, L. Zhang, et al., Dynamic compressive mechanical properties of the spiral tungsten wire reinforced Zr-based bulk metallic glass composites, Composites Part B, 199(2020), art. No. 108219. doi: 10.1016/j.compositesb.2020.108219
      [11]
      W.Q. Hu, Z. Dong, H. Wang, T. Ahamad, and Z.Q. Ma, Microstructure refinement and mechanical properties improvement in the W-Y2O3 alloys via optimized freeze-drying, Int. J. Refract. Met. Hard Mater., 95(2021), art. No. 105453. doi: 10.1016/j.ijrmhm.2020.105453
      [12]
      W.Q. Hu, Z.Q. Ma, Z. Qian, et al., Influence of minor Ti additive on the microstructure and mechanical properties of Mo based alloys, Int. J. Refract. Met. Hard Mater., 99(2021), art. No. 105599. doi: 10.1016/j.ijrmhm.2021.105599
      [13]
      W.Q. Hu, L.M. Yu, Z.Q. Ma, and Y.C. Liu, W–Y2O3 composite nanopowders prepared by freeze-drying method and its sintering characteristics, J. Alloys Compd., 806(2019), p. 127. doi: 10.1016/j.jallcom.2019.07.214
      [14]
      L.R. Dong, J.H. Li, J.S. Wang, et al., Fabrication and reduction process of dispersive Er2O3 doped Mo super-fine powders comparing with La2O3 doped Mo powders, Powder Technol., 346(2019), p. 78. doi: 10.1016/j.powtec.2019.01.073
      [15]
      R.Z. Liu, K.S. Wang, P.F. Feng, G. An, Q.L. Yang, and H. Zhao, Microstructure and tensile properties of Mo alloy synthetically strengthened by nano-Y2O3 and nano-CeO2, Rare Met., 33(2014), No. 1, p. 58. doi: 10.1007/s12598-013-0120-3
      [16]
      L.J. Xu, S.Z. Wei, J.W. Li, G.S. Zhang, and B.Z. Dai, Preparation, microstructure and properties of molybdenum alloys reinforced by in situ Al2O3 particles, Int. J. Refract. Met. Hard Mater., 30(2012), No. 1, p. 208. doi: 10.1016/j.ijrmhm.2011.08.012
      [17]
      L.Y. Yao, S.Z. Wei, Y.C. Zhou, et al., Preparation and characterization of Mo/ZrO2–Y2O3 composites, Int. J. Refract. Met. Hard Mater., 75(2018), p. 202. doi: 10.1016/j.ijrmhm.2018.04.018
      [18]
      W.Q. Hu, Z.F. Du, Z.Z. Dong, L.M. Yu, T. Ahamad, and Z.Q. Ma, The synthesis of TiC dispersed strengthened Mo alloy by freeze-drying technology and subsequent low temperature sintering, Scripta Mater., 198(2021), art. No. 113831. doi: 10.1016/j.scriptamat.2021.113831
      [19]
      W.Q. Hu, Z. Dong, L.M. Yu, Z.Q. Ma, and Y.C. Liu, Synthesis of W–Y2O3 alloys by freeze-drying and subsequent low temperature sintering: Microstructure refinement and second phase particles regulation, J. Mater. Sci. Technol., 36(2020), p. 84. doi: 10.1016/j.jmst.2019.08.010
      [20]
      G. Liu, G.J. Zhang, F. Jiang, et al., Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility, Nat. Mater., 12(2013), No. 4, p. 344. doi: 10.1038/nmat3544
      [21]
      H. Kurishita, Y. Amano, S. Kobayashi, et al., Development of ultra-fine grained W–TiC and their mechanical properties for fusion applications, J. Nucl. Mater., 367-370(2007), p. 1453. doi: 10.1016/j.jnucmat.2007.04.008
      [22]
      H. Kurishita, S. Kobayashi, K. Nakai, et al., Development of ultra-fine grained W–(0.25–0.8)wt%TiC and its superior resistance to neutron and 3 MeV He-ion irradiations, J. Nucl. Mater., 377(2008), No. 1, p. 34. doi: 10.1016/j.jnucmat.2008.02.055
      [23]
      M. Battabyal, R. Schäublin, P. Spätig, and N. Baluc, W–2 wt.%Y2O3 composite: Microstructure and mechanical properties, Mater. Sci. Eng. A, 538(2012), p. 53. doi: 10.1016/j.msea.2012.01.011
      [24]
      Z. Dong, Z.Q. Ma, and Y.C. Liu, Accelerated sintering of high-performance oxide dispersion strengthened alloy at low temperature, Acta Mater., 220(2021), art. No. 117309. doi: 10.1016/j.actamat.2021.117309
      [25]
      A. Moitra, S. Kim, S.G. Kim, S.J. Park, R.M. German, and M.F. Horstemeyer, Investigation on sintering mechanism of nanoscale tungsten powder based on atomistic simulation, Acta Mater., 58(2010), No. 11, p. 3939. doi: 10.1016/j.actamat.2010.03.033
      [26]
      W.Q. Hu, Q.S. Ma, Z.Q. Ma, Y. Huang, Z.M. Wang, and Y.C. Liu, Ultra-fine W–Y2O3 composite powders prepared by an improved chemical co-precipitation method and its interface structure after spark plasma sintering, Tungsten, 1(2019), No. 3, p. 220. doi: 10.1007/s42864-019-00021-w
      [27]
      T. Lan, Y.H. Jiang, X.J. Zhang, F. Cao, and S.H. Liang, Competitive precipitation behavior of hybrid reinforcements in copper matrix composites fabricated by powder metallurgy, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 1090. doi: 10.1007/s12613-020-2052-x
      [28]
      Z.H. Deng, H.Q. Yin, X. Jiang, et al., Machine-learning-assisted prediction of the mechanical properties of Cu–Al alloy, Int. J. Miner. Metall. Mater., 27(2020), No. 3, p. 362. doi: 10.1007/s12613-019-1894-6
      [29]
      Y.T. Wu, C. Li, Y.F. Li, J. Wu, X.C. Xia, and Y.C. Liu, Effects of heat treatment on the microstructure and mechanical properties of Ni3Al-based superalloys: A review, Int. J. Miner. Metall. Mater., 28(2021), No. 4, p. 553. doi: 10.1007/s12613-020-2177-y
      [30]
      J.H. Xiao, Y. Xiong, L. Wang, et al., Oxidation behavior of high Hf nickel-based superalloy in air at 900, 1000 and 1100°C, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1957. doi: 10.1007/s12613-020-2204-z
      [31]
      H. Kazempour-Liasi, M. Tajally, and H. Abdollah-Pour, Liquation cracking in the heat-affected zone of IN939 superalloy tungsten inert gas weldments, Int. J. Miner. Metall. Mater., 27(2020), No. 6, p. 764. doi: 10.1007/s12613-019-1954-y
      [32]
      B.R. Ke, Y.C. Sun, Y. Zhang, et al., Powder metallurgy of high-entropy alloys and related composites: A short review, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 931. doi: 10.1007/s12613-020-2221-y
      [33]
      M.S. Ghazani and B. Eghbali, Strain hardening behavior, strain rate sensitivity and hot deformation maps of AISI 321 austenitic stainless steel, Int. J. Miner. Metall. Mater., 28(2021), No. 11, p. 1799. doi: 10.1007/s12613-020-2163-4
      [34]
      W. Bleck, New insights into the properties of high-manganese steel, Int. J. Miner. Metall. Mater., 28(2021), No. 5, p. 782. doi: 10.1007/s12613-020-2166-1
      [35]
      Y. Liu, Y.H. Sun, and H.T. Wu, Effects of chromium on the microstructure and hot ductility of Nb-microalloyed steel, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 1011. doi: 10.1007/s12613-020-2092-2
      [36]
      J.N. Gan, Q.M. Gong, Y.Q. Jiang, et al., Microstructure and high-temperature mechanical properties of second-phase enhanced Mo–La2O3–ZrC alloys post-treated by cross rolling, J. Alloys Compd., 796(2019), p. 167. doi: 10.1016/j.jallcom.2019.04.348
      [37]
      W.Q. Hu, Z. Dong, Z.Q. Ma, and Y.C. Liu, W–Y2O3 composite nanopowders prepared by hydrothermal synthesis method: Co-deposition mechanism and low temperature sintering characteristics, J. Alloys Compd., 821(2020), art. No. 153461. doi: 10.1016/j.jallcom.2019.153461
      [38]
      Z. Dong, Z.Q. Ma, L.M. Yu, and Y.C. Liu, Achieving high strength and ductility in ODS-W alloy by employing oxide@W core–shell nanopowder as precursor, Nat. Commun., 12(2021), art. No. 5052. doi: 10.1038/s41467-021-25283-2
      [39]
      J.S. Lin, L.M. Luo, K. Huang, et al., Preparation and properties of fine-grained and ultrafine-grained W–TiC–Y2O3 composite, Fusion Eng. Des., 126(2018), p. 147. doi: 10.1016/j.fusengdes.2017.12.002
      [40]
      Y.F. Zhou, Z.Y. Zhao, X.Y. Tan, et al., Densification and microstructure evolution of W–TiC–Y2O3 during spark plasma sintering, Int. J. Refract. Met. Hard Mater., 79(2019), p. 95. doi: 10.1016/j.ijrmhm.2018.11.014
      [41]
      J.S. Lin, Y.C. Hao, L.M. Luo, et al., Microstructure and performances of W–TiC–Y2O3 composites prepared by mechano-chemical and wet-chemical methods, J. Alloys Compd., 732(2018), p. 871. doi: 10.1016/j.jallcom.2017.10.269
      [42]
      M.Y. Xu, L.M. Luo, Y. Xu, et al., Effect of laser beam thermal shock on the helium ion irradiation damage behavior of W–TiC–Y2O3 composites, J. Nucl. Mater., 509(2018), p. 198. doi: 10.1016/j.jnucmat.2018.06.043
      [43]
      L. Veleva, R. Schaeublin, M. Battabyal, T. Plociski, and N. Baluc, Investigation of microstructure and mechanical properties of W–Y and W–Y2O3 materials fabricated by powder metallurgy method, Int. J. Refract. Met. Hard Mater., 50(2015), p. 210. doi: 10.1016/j.ijrmhm.2015.01.011
      [44]
      J.S. Wang, W. Liu, Z.Y. Ren, et al., Characteristics of La2O3–Y2O3–Mo cermet cathode with RE2O3 nano particles, Curr. Appl. Phys., 11(2011), No. 3, p. 667. doi: 10.1016/j.cap.2010.11.014
      [45]
      Y.Q. Lv, J.L. Fan, Y. Han, T. Liu, P.F. Li, and H.X. Yan, The influence of modification route on the properties of W–0.3 wt%Y2O3 powder and alloy prepared by nano-in-situ composite method, J. Alloys Compd., 774(2019), p. 1140. doi: 10.1016/j.jallcom.2018.09.163
      [46]
      W.Q. Hu, Z. Dong, Z.Q. Ma, and Y.C. Liu, Microstructure refinement in W–Y2O3 alloys via an improved hydrothermal synthesis method and low temperature sintering, Inorg. Chem. Front., 7(2020), No. 3, p. 659. doi: 10.1039/C9QI01271K
      [47]
      W.Q. Hu, X.W. Kong, Z.F. Du, A. Khan, and Z.Q. Ma, Synthesis and characterization of nano TiC dispersed strengthening W alloys via freeze-drying, J. Alloys Compd., 859(2021), art. No. 157774. doi: 10.1016/j.jallcom.2020.157774
      [48]
      M.A. Yar, S. Wahlberg, H. Bergqvist, H.G. Salem, M. Johnsson, and M. Muhammed, Chemically produced nanostructured ODS-lanthanum oxide–tungsten composites sintered by spark plasma, J. Nucl. Mater., 408(2011), No. 2, p. 129. doi: 10.1016/j.jnucmat.2010.10.060
      [49]
      X.Y. Li, L. Zhang, Y.H. Dong, et al., Pressureless two-step sintering of ultrafine-grained tungsten, Acta Mater., 186(2020), p. 116. doi: 10.1016/j.actamat.2020.01.001
      [50]
      T. Ryu, K.S. Hwang, Y.J. Choi, and H.Y. Sohn, The sintering behavior of nanosized tungsten powder prepared by a plasma process, Int. J. Refract. Met. Hard Mater., 27(2009), No. 4, p. 701. doi: 10.1016/j.ijrmhm.2008.11.004
      [51]
      L. Wang, J. Sun, G. Liu, Y.J. Sun, and G.J. Zhang, Influences of annealing temperature on microstructure and mechanical properties of Mo–La2O3, Int. J. Refract. Met. Hard Mater., 29(2011), No. 4, p. 522. doi: 10.1016/j.ijrmhm.2011.03.003
      [52]
      F.N. Xiao, T. Barriere, G. Cheng, et al., Research on the effect of liquid–liquid doping processes on the doped powders and microstructures of W–ZrO2(Y) alloys, J. Alloys Compd., 855(2021), art. No. 157335. doi: 10.1016/j.jallcom.2020.157335
      [53]
      Z. Dong, Z.Q. Ma, L.M. Yu, and Y.C. Liu, Enhanced mechanical properties in oxide-dispersion-strengthened alloys achieved via interface segregation of cation dopants, Sci. China Mater., 64(2021), No. 4, p. 987. doi: 10.1007/s40843-020-1481-0
      [54]
      S.T. Lang, Q.Z. Yan, Y.J. Wang, et al., Preparation and microstructure characterization of W–0.1 wt.%TiC alloy via chemical method, Int. J. Refract. Met. Hard Mater., 55(2016), p. 33. doi: 10.1016/j.ijrmhm.2015.11.005
      [55]
      Z.M. Xie, R. Liu, Q.F. Fang, et al., Microstructure and mechanical properties of nano-size zirconium carbide dispersion strengthened tungsten alloys fabricated by spark plasma sintering method, Plasma Sci. Technol., 17(2015), No. 12, p. 1066. doi: 10.1088/1009-0630/17/12/15
      [56]
      T. Zhang, H.W. Deng, Z.M. Xie, et al., Recent progresses on designing and manufacturing of bulk refractory alloys with high performances based on controlling interfaces, J. Mater. Sci. Technol., 52(2020), p. 29. doi: 10.1016/j.jmst.2020.02.046
      [57]
      C.P. Cui, Y.M. Gao, S.Z. Wei, et al., Study on preparation and properties of molybdenum alloys reinforced by nano-sized ZrO2 particles, Appl. Phys. A, 122(2016), No. 3, art. No. 214. doi: 10.1007/s00339-016-9743-1
      [58]
      C.P. Cui, Y.M. Gao, S.Z. Wei, G.S. Zhang, X.W. Zhu, and S.L. Guo, Preparation and properties of ZrO2/Mo alloys, High Temp. Mater. Process., 36(2017), No. 2, p. 163. doi: 10.1515/htmp-2015-0180
      [59]
      J.S. Wang, M.L. Zhou, S.Y. Ma, and T.Y. Zuo, A study on the anti-electron-bombing life of La2O3–Y2O3–Mo cermet cathode materials, J. Alloys Compd., 419(2006), No. 1-2, p. 172. doi: 10.1016/j.jallcom.2005.06.086

    Catalog


    • /

      返回文章
      返回