Cite this article as:

Weiqiang Hu, Fengming Gong, Shaocun Liu, Jing Tan, Songhua Chen, Hui Wang, and Zongqing Ma, Microstructure refinement and second phase particle regulation of Mo–Y2O3 alloys by minor TiC additive, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp.2012-2019. https://dx.doi.org/10.1007/s12613-022-2462-z
Weiqiang Hu, Fengming Gong, Shaocun Liu, Jing Tan, Songhua Chen, Hui Wang, and Zongqing Ma, Microstructure refinement and second phase particle regulation of Mo–Y2O3 alloys by minor TiC additive, Int. J. Miner. Metall. Mater., 29(2022), No. 11, pp.2012-2019. https://dx.doi.org/10.1007/s12613-022-2462-z
引用本文 PDF XML SpringerLink

微量TiC掺杂对Mo–Y2O3合金组织的细化和第二相粒子的调控

摘要: 氧化物弥散强化的钼合金具有很多优异的力学性能,在高温合金领域具有很大的吸引力。然而传统球磨及后续烧结工艺制备的氧化物弥散强化Mo合金(ODS-Mo)的Mo晶粒较粗,Mo晶界处的氧化物颗粒也较大,这明显抑制了氧化物加入的强化效果。在这项工作中,我们通过球磨和随后的低温烧结,将Y2O3和TiC颗粒同时掺杂到Mo合金中。随着TiC的加入,Mo–Y2O3晶粒由3.12 μm急剧细化到1.36 μm。特别是,与单独掺杂的Y2O3颗粒(~420 nm)相比,共掺杂的Y2O3和TiC在Mo晶界上能形成更小的Y–Ti–O–C第四相颗粒(~230 nm),从而能更有效地固定和阻碍晶界的运动。除了晶界上的Y–Ti–O–C颗粒外,Mo颗粒中还存在Y2O3、TiOx和TiCx纳米颗粒(<100 nm),这与传统的ODS-Mo有显著不同。TiOx相的出现表明,TiC中的一些活性Ti吸附Mo基体中的氧杂质形成新的强化相,从而对Mo基体进行强化和净化。纯Mo、Mo–Y2O3和Mo–Y2O3– TiC合金具有相似的相对密度(97.4%–98.0%)。更重要的是,Mo–Y2O3–TiC合金的硬度(HV0.2 (425 ± 25))高于Mo–Y2O3合金(HV0.2 (370 ± 25))。本研究为球磨法制备超细Mo合金提供了相关的策略。

 

Microstructure refinement and second phase particle regulation of Mo–Y2O3 alloys by minor TiC additive

Abstract: The oxide dispersion strengthened Mo alloys (ODS-Mo) prepared by traditional ball milling and subsequent sintering technique generally possess comparatively coarse Mo grains and large oxide particles at Mo grain boundaries (GBs), which obviously suppress the corresponding strengthening effect of oxide addition. In this work, the Y2O3 and TiC particles were simultaneously doped into Mo alloys using ball-milling and subsequent low temperature sintering. Accompanied by TiC addition, the Mo–Y2O3 grains are sharply refined from 3.12 to 1.36 μm. In particular, Y2O3 and TiC can form smaller Y–Ti–O–C quaternary phase particles (~230 nm) at Mo GBs compared to single Y2O3 particles (~420 nm), so as to these new formed Y–Ti–O–C particles can more effectively pin and hinder GBs movement. In addition to Y–Ti–O–C particles at GBs, Y2O3, TiOx, and TiCx nanoparticles (<100 nm) also exist within Mo grains, which is significantly different from traditional ODS-Mo. The appearance of TiOx phase indicates that some active Ti within TiC can adsorb oxygen impurities of Mo matrix to form a new strengthening phase, thus strengthening and purifying Mo matrix. Furthermore, the pure Mo, Mo–Y2O3, and Mo–Y2O3–TiC alloys have similar relative densities (97.4%–98.0%). More importantly, the Mo–Y2O3–TiC alloys exhibit higher hardness (HV0.2 (425 ± 25)) compared to Mo–Y2O3 alloys (HV0.2 (370 ± 25)). This work could provide a relevant strategy for the preparation of ultrafine Mo alloys by facile ball-milling.

 

/

返回文章
返回