留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 4
Apr.  2022

图(17)

数据统计

分享

计量
  • 文章访问数:  2540
  • HTML全文浏览量:  316
  • PDF下载量:  214
  • 被引次数: 0
Peng Xu, Renshu Yang, Jinjing Zuo, Chenxi Ding, Cheng Chen, Yang Guo, Shizheng Fang,  and Yufei Zhang, Research progress of the fundamental theory and technology of rock blasting, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 705-716. https://doi.org/10.1007/s12613-022-2464-x
Cite this article as:
Peng Xu, Renshu Yang, Jinjing Zuo, Chenxi Ding, Cheng Chen, Yang Guo, Shizheng Fang,  and Yufei Zhang, Research progress of the fundamental theory and technology of rock blasting, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 705-716. https://doi.org/10.1007/s12613-022-2464-x
引用本文 PDF XML SpringerLink
特约综述

岩石爆破基础理论与技术研究进展

  • 通讯作者:

    杨仁树    E-mail: yrs@ustb.edu.cn

文章亮点

  • (1) 建立了动态光弹性-数字图像相关综合实验系统,提出了爆炸荷载下应力场全场主应力计算方法。
  • (2) 研究了爆炸应力波与裂纹的相互作用机理,发现爆炸膨胀波对相向扩展爆炸裂纹有抑制作用,剪切波对相向扩展爆炸裂纹有促进作用。
  • (3) 建立了三维地质爆破模型实验系统,探究了地应力场对爆炸裂纹扩展、岩体破碎和掏槽爆破效果的影响规律。
  • (4) 开发了分阶分段掏槽爆破技术和掏槽孔超深爆破技术,提高了深孔掏槽爆破效果。
  • (5) 开发了切缝药包周边定向断裂控制爆破技术,改善了巷道爆破成型质量。
  • 钻爆法是地下空间开挖和矿产资源开采的主要手段。然而,由于岩体的非均质和各向异性、爆破过程的瞬态性、爆炸裂纹扩展的随机性,致使难以掌握炸药爆炸做功与岩体破碎耗能的耦合作用机理以及炸药爆炸能量释放和爆炸裂纹扩展的精密控制原理两个关键科学问题,并导致爆破工程施工中普遍存在爆破掘进效率低、成型质量差和围压损伤范围大等技术难题。近三十年来,笔者针对上述关键科学问题和技术难题进行了系统研究,本文详细总结了相关实验研究进展,包括:① 开展了水下爆破实验,获得了爆炸能量释放的基本规律。发现爆炸冲击波峰值强度高,持续时间短;爆生气体峰值强度低,持续时间长。② 建立了动光弹性-数字图像相关综合测试系统,提出了爆炸应力场全场主应力计算方法,定量分析了炮孔装药结构、炮孔个数、起爆时差等参数对爆炸应力场时空演化的影响。③ 开展了爆炸应力波与裂纹相互作用机理研究,获得了爆炸应力波作用下裂纹尖端局部应力场的变化规律,探明了爆炸裂纹尖端局部应力场对裂纹扩展方向的影响;揭示了爆炸膨胀波对相向扩展裂纹有抑制作用,而剪切波对相向扩展裂纹有促进作用。④ 建立了三维地质爆破模型实验系统,探究了地应力场对爆炸裂纹扩展、岩体破碎和掏槽爆破效果的影响规律。⑤ 基于理论研究成果,开发了分阶分段掏槽爆破、掏槽孔超深爆破技术和切缝药包定向断裂爆破等技术,构建了精准、高效、安全的精细化爆破。研究成果对丰富和发展岩石爆破理论,服务深地开发国家战略具有重要意义。
  • Invited Review

    Research progress of the fundamental theory and technology of rock blasting

    + Author Affiliations
    • Investigating rock fragmentation mechanisms under blasting and developing new blasting technologies are important and challenging directions for blast engineering. Recently, with the development of experimental techniques, the fundamental theory of rock blasting has been extensively studied in the past few decades and has made important achievements in the full understanding of the rock fracturing process under blast loading. It is thus imperative to systematically review the progress in this direction. This paper mainly focuses on the experimental study of rock blasting, including the distribution characteristic of blast energy, evolution of the blast stress field, propagation mechanism of cracks, interaction mechanism between blast waves and cracks, and influence of geostatic stress on rock fragmentation. In addition, some newly developed blasting technologies and their applications are briefly presented. This review could provide comprehensive insights to guide the study on the rock fracturing mechanism under blasting and further provide meaningful guidance for optimizing blast parameters in engineering.
    • loading
    • [1]
      Ministry of Natural Resources, PRC., China Mineral Resources 2020, Geological Publishing House, Beijing, 2020, p. 11.
      [2]
      D.F. Jie, X.Y. Xu, and F. Guo, The future of coal supply in China based on non-fossil energy development and carbon price strategies, Energy, 220(2021), art. No. 119644. doi: 10.1016/j.energy.2020.119644
      [3]
      B.A. Sokolov, Theoretical principles of blasting energy distribution in a medium, and their applications to practical problems, Sov. Min., 14(1978), No. 6, p. 567. doi: 10.1007/BF02499491
      [4]
      V. Sedlák, Energy evaluation of de-stress blasting, Acta Montan. Slovaca, 2(1997), No. 2, p. 11.
      [5]
      O. Finn, N. Ulf, O. Mats, B. Ingvar, G. Lars, and G. Henrik, Where does the explosive energy in rock blasting rounds go?, Sci. Technol. Energetic Mater., 65(2004), No. 2, p. 54.
      [6]
      S.L. Yan, The Study of the Blasting Energy Distribution with Concentric and Cylindric Charge [Dissertation], Research Institute of Railway Sciences, Beijing, 1994, p. 1.
      [7]
      X.T. Gao, Detonation Shock Dynamic Behavior of Split-tube Charge Holder [Dissertation], China University of Mining and Technology (Beijing), Beijing, 2013, p. 78.
      [8]
      N.V. Melnikov, L.N. Marchenko, I.F. Zharikov, and N.P. Seinov, Blasting methods to improve rock fragmentation, Acta Astronaut., 5(1978), No. 11-12, p. 1113. doi: 10.1016/0094-5765(78)90014-0
      [9]
      A.S. Hashemi and P. Katsabanis, The effect of stress wave interaction and delay timing on blast-induced rock damage and fragmentation, Rock Mech. Rock Eng., 53(2020), p. 2327. doi: 10.1007/s00603-019-02043-9
      [10]
      Z.X. Zhang, Rock Fracture and Blasting: Theory and Applications, Elsevier, Butterworth-Heinemann, 2016, p. 1.
      [11]
      R.S. Yang, W.Y. Li, S.Z. Fang, Y. Zhu, Y.L. Li, and C.D. Zheng, Tests for effects of wave impedance on rock’s dynamic performance, J. Vib. Shock, 39(2020), No. 3, p. 178.
      [12]
      R.S. Yang, W.Y. Li, G.L. Yang, and X.M. Ma, Experimental study on the blasting effects of rich-iron ore with different explosives, Explos. Shock Waves, 40(2020), No. 6, p. 96.
      [13]
      L.B. Jayasinghe, J.L. Shang, Z.Y. Zhao, and A.T.C. Goh, Numerical investigation into the blasting-induced damage characteristics of rocks considering the role of in situ stresses and discontinuity persistence, Comput. Geotech., 116(2019), art. No. 103207. doi: 10.1016/j.compgeo.2019.103207
      [14]
      S.H. Chen, S.W. Hu, Z.H. Zhang, and J. Wu, Propagation characteristics of vibration waves induced in surrounding rock by tunneling blasting, J. Mt. Sci., 14(2017), No. 12, p. 2620. doi: 10.1007/s11629-017-4364-5
      [15]
      J.H. Yang, W.B. Lu, P. Li, and P. Yan, Evaluation of rock vibration generated in blasting excavation of deep-buried tunnels, KSCE J. Civ. Eng., 22(2018), No. 7, p. 2593. doi: 10.1007/s12205-017-0240-7
      [16]
      S. Zeng, S.P. Wang, B. Sun, and Q.B. Liu, Propagation characteristics of blasting stress waves in layered and jointed rock caverns, Geotech. Geol. Eng., 36(2018), No. 3, p. 1559. doi: 10.1007/s10706-017-0410-x
      [17]
      Q. Li, Experiment of Fracture Behavior and Control for Crack Propagation Under Blasting Load [Dissertation], China University of Mining and Technology (Beijing), Beijing, 2009.
      [18]
      Y. Guo, Q. Li, R.S. Yang, P. Xu, Y. Zhao, and Y. Wang, Evolution of stress field in cylindrical blasting with bottom initiation, Opt. Lasers Eng., 133(2020), art. No. 106153. doi: 10.1016/j.optlaseng.2020.106153
      [19]
      J.W. Dally and S.A. Thau, Observations of stress wave propagation in a half-plane with boundary loading, Int. J. Solids Struct., 3(1967), No. 3, p. 293. doi: 10.1016/0020-7683(67)90031-5
      [20]
      C.X. Ding, R.S. Yang, and C. Feng, Stress wave superposition effect and crack initiation mechanism between two adjacent boreholes, Int. J. Rock Mech. Min. Sci., 138(2021), art. No. 104622. doi: 10.1016/j.ijrmms.2021.104622
      [21]
      C. Chen, Mechanism of Blast Wave Field Propagation and Wave-crack Interaction [Dissertation], China University of Mining and Technology (Beijing), Beijing, 2020, p. 23.
      [22]
      I. Oda, Y. Tanaka, A. Masuki, and T. Izuma, Crack-tip stress field measured by infrared thermography and fracture strength in bonded dissimilar plate, Q. J. Jpn. Weld. Soc., 18(2000), No. 3, p. 487. doi: 10.2207/qjjws.18.487
      [23]
      J.M. Huntley and L.R. Benckert, Measurement of dynamic crack tip displacement field by speckle photography and interferometry, Opt. Lasers Eng., 19(1993), No. 4, p. 299. doi: 10.1016/0143-8166(93)90070-2
      [24]
      W. Liu, Z.W. Yue, and G.L. Yang, Experimental investigation of a circumferential crack in a PMMA cylindrical shell using caustics, Polym. Test., 79(2019), art. No. 106086. doi: 10.1016/j.polymertesting.2019.106086
      [25]
      Z.W. Yue, R.S. Yang, X.M. Ma, and D.M. Guo, Experimental study on crack coalescence mechanisms of pre-existing flaws under blast loading, [in] International Conference on Experimental Mechanics 2008 and Seventh Asian Conference on Experimental Mechanics, Nanjing, 2008, art. No. 73751C.
      [26]
      A.J. Rosakis, J. Duffy, and L.B. Freund, The determination of dynamic fracture toughness of AISI 4340 steel by the shadow spot method, J. Mech. Phys. Solids, 32(1984), No. 6, p. 443. doi: 10.1016/0022-5096(84)90030-9
      [27]
      L.Y. Yang, R.S. Yang, and P. Xu, Caustics method combined with laser & digital high-speed camera and its applications, J. China Univ. Min. Technol., 42(2013), No. 2, p. 188.
      [28]
      R.S. Yang, Y.B. Wang, H.J. Xue, and M.Y. Wang, Dynamic behavior analysis of perforated crack propagation in two-hole blasting, Procedia Earth Planet. Sci., 5(2012), p. 254. doi: 10.1016/j.proeps.2012.01.044
      [29]
      P. Xu, R.S. Yang, Y. Guo, C. Chen, and Y.T. Zhang, Experimental and numerical investigation of the interaction between blast wave and precrack in a defected material, Appl. Opt., 58(2019), No. 35. p.9718.
      [30]
      S.W. Shen, W.W. Liao, Y. Xu, and D. Li, Dynamic caustics test of rock mass under different joint spacing conditions with two-hole blasting, J. China Coal Soc., 43(2018), No. 8, p. 2180.
      [31]
      P. Xu, R.S. Yang, Y. Guo, C. Chen, and Z.C. Guo, Experimental investigation of the stress field around the crack tip in a polymer material under dynamic loading, Opt. Eng., 59(2020), No. 4, art. No. 1.
      [32]
      A. Daehnke, H.P. Rossmanith, and J.A.L. Napier, Gas pressurisation of blast-induced conical cracks, Int. J. Rock Mech. Min. Sci., 34(1997), No. 3-4, p. 626.e1. doi: 10.1016/S1365-1609(97)00282-7
      [33]
      A. Daehnke, H.P. Rossmanith, and R.E. Knasmillner, Blast-induced dynamic fracture propagation, [in] Rock Fragmentation by Blasting, 1st Ed., CRC Press, 2020, p. 13.
      [34]
      H.P. Rossmanith, R.E. Knasmillner, A. Daehnke, and L. Mishnaevsky, Wave propagation, damage evolution, and dynamic fracture extension. Part II. Blasting, Mater. Sci., 32(1996), No. 4, p. 403. doi: 10.1007/BF02538964
      [35]
      H. Jeong, B. Jeon, S. Choi, and S. Jeon, Fracturing behavior around a blasthole in a brittle material under blasting loading, Int. J. Impact Eng., 140(2020), art. No. 103562. doi: 10.1016/j.ijimpeng.2020.103562
      [36]
      Y. Guo, Experimental Study on Explosive Process and Dynamic Fracture Mechanics Properties with Linear Charge Blasting [Dissertation], China University of Mining and Technology (Beijing), Beijing, 2018, p. 137.
      [37]
      N. Sukumar, N. Moës, B. Moran, and T. Belytschko, Extended finite element method for three-dimensional crack modelling, Int. J. Numer. Methods Eng., 48(2000), No. 11, p. 1549. doi: 10.1002/1097-0207(20000820)48:11<1549::AID-NME955>3.0.CO;2-A
      [38]
      S. Bordas, T. Rabczuk, and G. Zi, Three-dimensional crack initiation, propagation, branching and junction in non-linear materials by an extended meshfree method without asymptotic enrichment, Eng. Fract. Mech., 75(2008), No. 5, p. 943. doi: 10.1016/j.engfracmech.2007.05.010
      [39]
      G.C. Sih, Elastodynamic Crack Problems, Springer, Dordrecht, 1977, p. 1.
      [40]
      L.B. Freund, Dynamic Fracture Mechanics, Cambridge University Press, Cambridge, 1998, p. 1.
      [41]
      C.Z. Zhang, X.S. Chen, and Z.R. Li, Interaction of elastic waves with a periodic array of collinear inplane cracks, Acta Mech. Sin., 8(1992), No. 4, p. 328. doi: 10.1007/BF02487172
      [42]
      P. Blanloeuil, A. Meziane, and C. Bacon, Numerical study of nonlinear interaction between a crack and elastic waves under an oblique incidence, Wave Motion, 51(2014), No. 3, p. 425. doi: 10.1016/j.wavemoti.2013.10.002
      [43]
      S. Hirose and J.D. Achenbach, Time-domain boundary element analysis of elastic wave interaction with a crack, Int. J. Numer. Methods Eng., 28(1989), No. 3, p. 629. doi: 10.1002/nme.1620280311
      [44]
      P. Xu, R.S. Yang, Y. Guo, and Z.C. Guo, Investigation of the blast-induced crack propagation behavior in a material containing an unfilled joint, Appl. Sci., 10(2020), No. 13, art. No. 4419. doi: 10.3390/app10134419
      [45]
      P. Qiu, Z.W. Yue, R.S. Yang, and J.C. Li, Effects of vertical and horizontal reflected blast stress waves on running cracks by caustics method, Eng. Fract. Mech., 212(2019), p. 164. doi: 10.1016/j.engfracmech.2019.03.018
      [46]
      R.S. Yang, C. Chen, P. Xu, C.X. Ding, and Z.R. Zhang, Experimental investigation of obliquely incident blast wave effect on deflection of running cracks, J. Test. Eval., 49(2021), No. 2, art. No. 20190030. doi: 10.1520/JTE20190030
      [47]
      P. Xu, R.S. Yang, Y. Guo, C. Chen, and Y.Q. Kang, Investigation of the effect of the blast waves on the opposite propagating crack, Int. J. Rock Mech. Min. Sci., 144(2021), art. No. 104818. doi: 10.1016/j.ijrmms.2021.104818
      [48]
      W.B. Lu, M. Chen, X. Geng, D.Q. Shu, and C.B. Zhou, A study of excavation sequence and contour blasting method for underground powerhouses of hydropower stations, Tunnelling Underground Space Technol., 29(2012), p. 31. doi: 10.1016/j.tust.2011.12.008
      [49]
      D.S. Liu, W.F. Wang, L.J. Yang, and F.H. Xie, Holophotoelasticity study on mechanism of blasting under initiative stress field, J. China Coal Soc., 6(1999), p. 612.
      [50]
      R.S. Yang, C.X. Ding, Y.L. Li, L.Y. Yang, and Y. Zhao, Crack propagation behavior in slit charge blasting under high static stress conditions, Int. J. Rock Mech. Min. Sci., 119(2019), p. 117. doi: 10.1016/j.ijrmms.2019.05.002
      [51]
      R.S. Yang, C.X. Ding, L.Y. Yang, and C. Chen, Model experiment on dynamic behavior of jointed rock mass under blasting at high-stress conditions, Tunnelling Underground Space Technol., 74(2018), p. 145. doi: 10.1016/j.tust.2018.01.017
      [52]
      L.T. Xie, P. Yan, W.B. Lu, M. Chen, and G.H. Wang, Comparison of seismic effects during deep tunnel excavation with different methods, Earthquake Eng. Eng. Vibr., 17(2018), No. 3, p. 659. doi: 10.1007/s11803-018-0452-y
      [53]
      Y.B. Wang, Z.J. Wen, G.Q. Liu, J.G. Wang, Z.Q. Bao, K.Q. Lu, D.C. Wang, and B.Z. Wang, Explosion propagation and characteristics of rock damage in decoupled charge blasting based on computed tomography scanning, Int. J. Rock Mech. Min. Sci., 136(2020), art. No. 104540. doi: 10.1016/j.ijrmms.2020.104540
      [54]
      J.J. Zuo, R.S. Yang, M. Gong, Y. Yang, and X.M. Ma, Studies on directional breaking controlled theory of slotted cartridge blasting for rock, Arab. J. Geosci., 14(2021), art. No. 1928. doi: 10.1007/s12517-021-08334-2
      [55]
      Y.F. Zhang, Model Test Study on Confining Pressure Effect of Cut Blasting in High Geo-stress Rock Lane [Dissertation], China University of Mining and Technology (Beijing), Beijing, 2018.
      [56]
      C.P. Yi, D. Johansson, and J. Greberg, Effects of in situ stresses on the fracturing of rock by blasting, Comput. Geotech., 104(2018), p. 321. doi: 10.1016/j.compgeo.2017.12.004
      [57]
      F.V. Donzé, J. Bouchez, and S.A. Magnier, Modeling fractures in rock blasting, Int. J. Rock Mech. Min. Sci., 34(1997), No. 8, p. 1153. doi: 10.1016/S1365-1609(97)80068-8
      [58]
      Z.R. Zhang, C.X. Ding, J.J. Zuo, C. Chen, J.P. Fan, J.Y. Zhu, and Z.W. Zhao, Experiment study on rock breaking mechanisms of two-step cutting technology in rock roadways, Chin. J. Rock Mech. Eng., 39(2020), No. 1, p. 93.
      [59]
      Z.R. Zhang and R.S. Yang, Multi-step cutting technology and its application in rock roadways, Chin. J. Rock Mech. Eng., 38(2019), No. 3, p. 551.
      [60]
      R.S. Yang, Z.R. Zhang, C. An, C.D. Zheng, C.X. Ding, and C.L. Xiao, Discussion on ultra-deep depth problem of slot hole in blasting excavation of rock roadway in coal mine, Coal Sci. Technol., 48(2020), No. 1, p. 10.
      [61]
      R.S. Yang, Y. Wang, G.H. Gong, Y. Zhao, J.J. Zuo, H.H. Luo, and C.D. Zheng, Experimental study on the ultra-deep length optimization of the excavation cutting holes in the tunnel of gongchangling iron mine, Met. Mine, 2020, No. 7, p. 16.
      [62]
      W.L. Fourney, J.W. Dally, and D.C. Holloway, Controlled blasting with ligamented charge holders, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 15(1978), No. 3, p. 121. doi: 10.1016/0148-9062(78)90006-2
      [63]
      L.L. Jiang, Mechanism and Application of Directional Fracture Blasting with Slotted Cartridge [Dissertation], China University of Mining and Technology (Beijing), Beijing, 2010.
      [64]
      R.S. Yang and J.J. Zuo, Experimental study on directional fracture blasting of cutting seam cartridge, Shock Vibr., 2019(2019), art. No. 1085921.
      [65]
      T. Shen, N. Luo, F.Z. Qi, H.L. Liang, W.H. Yang, and Z.G. Ma, Numerical simulation and optimization of smooth blasting in rock roadway with split-tube charge holder, J. Min. Safety Eng., 37(2020), No. 4, p. 674.
      [66]
      R.S. Yang, X.Q. Fu, L.Y. Yang, X.Y. Li, Q.F. Chen, C. Chen, and S.Z. Chen, Research on the shaping control of frozen wall and blasting vibration mitigation of shaft wall effect in mine vertical shaft, J. China Coal Soc., 41(2016), No. 12, p. 2975.
      [67]
      R.S. Yang, Y.L. Che, Q. Sun, G.L. Yang, X.S. Bai, and Z.B. Liao, Applied research on smooth blasting with different charge structure in metro running tunnel, Blasting, 30(2013), No. 2, p. 90.
      [68]
      J.S. Song, Y.B. Wang, X.T. Gao, G.L. Yang, and Z.W. Yue, The mechanism of directional fracture controlled blasting and its application, J. Min. Sci. Technol., 1(2016), No. 1, p. 16.

    Catalog


    • /

      返回文章
      返回