留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码
Volume 29 Issue 4
Apr.  2022

图(10)  / 表(3)

数据统计

分享

计量
  • 文章访问数:  10090
  • HTML全文浏览量:  3706
  • PDF下载量:  95
  • 被引次数: 0
Zhangzhi Shi, Changheng Li, Meng Li, Xiangmin Li,  and Luning Wang, Second phase refining induced optimization of Fe alloying in Zn: Significantly enhanced strengthening effect and corrosion uniformity, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 796-806. https://doi.org/10.1007/s12613-022-2468-6
Cite this article as:
Zhangzhi Shi, Changheng Li, Meng Li, Xiangmin Li,  and Luning Wang, Second phase refining induced optimization of Fe alloying in Zn: Significantly enhanced strengthening effect and corrosion uniformity, Int. J. Miner. Metall. Mater., 29(2022), No. 4, pp. 796-806. https://doi.org/10.1007/s12613-022-2468-6
引用本文 PDF XML SpringerLink
研究论文

通过第二相细化显著提高医用Zn–Fe合金的强度和腐蚀均匀性

  • 通讯作者:

    石章智    E-mail: ryansterne@163.com

    王鲁宁    E-mail: luning.wang@ustb.edu.cn

文章亮点

  • (1) 用底部循环水冷凝固法显著细化了医用Zn–0.3Fe合金中的FeZn13第二相。
  • (2) 凝固细化导致该合金的屈服和抗拉强度分别提高了86 MPa和105 MPa。
  • (3) 第二相细化后该合金在模拟体液中的腐蚀均匀性显著提升。
  • (4) 发现医用锌合金中合金元素的强化效率随添加量的变化呈现幂函数规律。
  • (5) 揭示了提高冷速消除长条状FeZn13第二相的机理是提高成分过冷降低了形核能垒。
  • 许多无毒且具有生理功能性的合金化元素,例如Fe、Ca和Sr等,在Zn基体中的固溶度低到可以忽略。在锌合金熔体的凝固过程中,它们往往与Zn形成金属间化合物,在熔体中形核生长,形成粗大的第二相颗粒。这导致这些低固溶度的合金化元素对锌合金的强化效果较弱,且导致合金的塑性显著降低。因此,细化粗大第二相是多种锌合金组织性能优化的共同追求。本文以含有粗大FeZn13第二相的Zn–0.3Fe合金为试金石,探索了底部循环水冷凝固法与多道次轧制结合的显微组织细化方法。研究发现,该方法能将FeZn13第二相颗粒的平均尺寸从24 μm细化至2 μm,将Zn晶粒由长度可超过800 μm的柱状晶组织细化为平均尺寸为5 μm的等轴晶组织。底部循环水冷凝固对FeZn13第二相颗粒的细化效果是总压下量达92%的多道次轧制对FeZn13第二相颗粒的细化效果的2.5倍,这说明在液态成形中进行金属间化合物第二相细化的重要意义。组织细化显著提高了Fe在Zn中的强化效果,轧制后,Zn–0.3Fe合金的屈服和抗拉强度由132 MPa和159 MPa分别提升至218 MPa和264 MPa,且延伸率仍有24%。此外,腐蚀不均匀程度和局部腐蚀坑的穿透深度也显著减小。上述研究结果说明,显微组织细化,特别是粗大金属间第二相颗粒的细化,对提高多种医用锌合金的强度和腐蚀均匀性具有很大潜力。
  • Research Article

    Second phase refining induced optimization of Fe alloying in Zn: Significantly enhanced strengthening effect and corrosion uniformity

    + Author Affiliations
    • Many non-toxic alloying elements, such as Fe, Ca, and Sr, have negligible solid solubilities in Zn matrix, leading to formation of coarse second phase particles. They exhibit low strengthening effects but highly detrimental to ductility. So refining second phase is a common pursuit for Zn alloys. The present paper takes Zn–0.3Fe alloy suffered from coarse FeZn13 second phase particles as a touchstone to testify microstructure refining effect through solidification with an accelerated speed and multi-pass rolling. FeZn13 particles are refined from 24 to 2 μm, and Zn grains are refined to 5 μm. As a result, the strengthening effect of Fe is enhanced significantly, with yield strength and the ultimate tensile strength of the alloy increased from 132 to 218 MPa and from 159 to 264 MPa, respectively. Furthermore, corrosion non-uniformity and penetration are much alleviated. These results show that microstructure refinement, especially on coarse intermetallic second phases, has a great potential to improve mechanical and degradation properties of biodegradable Zn alloys.
    • loading
    • [1]
      R. Solmaz and B.D. Karahan, Characterization and corrosion studies of ternary Zn–Ni–Sn alloys, Int. J. Miner. Metall. Mater., 27(2020), No. 1, p. 74. doi: 10.1007/s12613-019-1888-4
      [2]
      Nikhil, G. Ji, and R. Prakash, Hydrothermal synthesis of Zn–Mg-based layered double hydroxide coatings for the corrosion protection of copper in chloride and hydroxide media, Int. J. Miner. Metall. Mater., 28(2021), No. 12, p. 1991. doi: 10.1007/s12613-020-2122-0
      [3]
      B. Abedini, N.P. Ahmadi, S. Yazdani, and L. Magagnin, Structure and corrosion behavior of Zn–Ni–Mn/Zn–Ni layered alloy coatings electrodeposited under various potential regimes, Surf. Coat. Technol., 372(2019), p. 260. doi: 10.1016/j.surfcoat.2019.05.051
      [4]
      H.T. Yang, X.H. Qu, M.Q. Wang, H.W. Cheng, B. Jia, J.F. Nie, K.R. Dai, and Y.F. Zheng, Zn–0.4Li alloy shows great potential for the fixation and healing of bone fractures at load-bearing sites, Chem. Eng. J., 417(2021), art. No. 129317. doi: 10.1016/j.cej.2021.129317
      [5]
      B. Jia, H.T. Yang, Y. Han, Z.C. Zhang, X.H. Qu, Y.F. Zhuang, Q. Wu, Y.F. Zheng, and K.R. Dai, In vitro and in vivo studies of Zn–Mn biodegradable metals designed for orthopedic applications, Acta Biomater., 108(2020), p. 358. doi: 10.1016/j.actbio.2020.03.009
      [6]
      H. Guo, J.L. Hu, Z.Q. Shen, D.X. Du, Y.F. Zheng, and J.R. Peng, In vitro and in vivo studies of biodegradable Zn–Li–Mn alloy staples designed for gastrointestinal anastomosis, Acta Biomater., 121(2021), p. 713. doi: 10.1016/j.actbio.2020.12.017
      [7]
      B. Jia, H.T. Yang, Z.C. Zhang, X.H. Qu, X.F. Jia, Q. Wu, Y. Han, Y.F. Zheng, and K.R. Dai, Biodegradable Zn–Sr alloy for bone regeneration in rat femoral condyle defect model: In vitro and in vivo studies, Bioact. Mater., 6(2021), No. 6, p. 1588. doi: 10.1016/j.bioactmat.2020.11.007
      [8]
      J. Sun, X. Zhang, Z.Z. Shi, X.X. Gao, H.Y. Li, F.Y. Zhao, J.Q. Wang, and L.N. Wang, Development of a high-strength Zn–Mn–Mg alloy for ligament reconstruction fixation, Acta Biomater., 119(2021), p. 485. doi: 10.1016/j.actbio.2020.10.032
      [9]
      C. Xiao, X.Y. Shi, W.T. Yu, X.W. Wei, L.L. Cheng, X. Qiu, B.R. Li, D.C. Fan, J.L. Li, X.Z. Zhang, and D.W. Zhao, In vivo biocompatibility evaluation of Zn–0.05Mg–(0, 0.5, 1wt%)Ag implants in New Zealand rabbits, Mater. Sci. Eng. C, 119(2021), art. No. 111435. doi: 10.1016/j.msec.2020.111435
      [10]
      Z.Z. Shi, X.X. Gao, H.T. Chen, X.F. Liu, A. Li, H.J. Zhang, and L.N. Wang, Enhancement in mechanical and corrosion resistance properties of a biodegradable Zn–Fe alloy through second phase refinement, Mater. Sci. Eng. C, 116(2020), art. No. 111197. doi: 10.1016/j.msec.2020.111197
      [11]
      W.T. Zhang, P. Li, G. Shen, X.S. Mo, C. Zhou, D. Alexander, F. Rupp, J. Geis-Gerstorfer, H.J. Zhang, and G.J. Wan, Appropriately adapted properties of hot-extruded Zn–0.5Cu–xFe alloys aimed for biodegradable guided bone regeneration membrane application, Bioact. Mater., 6(2021), No. 4, p. 975. doi: 10.1016/j.bioactmat.2020.09.019
      [12]
      Z.Z. Shi, X.X. Gao, H.J. Zhang, X.F. Liu, H.Y. Li, C. Zhou, Y.X. Yin, and L.N. Wang, Design biodegradable Zn alloys: Second phases and their significant influences on alloy properties, Bioact. Mater., 5(2020), No. 2, p. 210. doi: 10.1016/j.bioactmat.2020.02.010
      [13]
      Z.Z. Shi, Z.L. Li, W.S. Bai, A. Tuoliken, J. Yu, and X.F. Liu, (Fe, Mn)Zn13 phase and its core–shell structure in novel biodegradable Zn–Mn–Fe alloys, Mater. Des., 162(2019), p. 235. doi: 10.1016/j.matdes.2018.11.057
      [14]
      A. Kafri, S. Ovadia, J. Goldman, J. Drelich, and E. Aghion, The suitability of Zn–1.3%Fe alloy as a biodegradable implant material, Metals, 8(2018), No. 3, art. No. 153. doi: 10.3390/met8030153
      [15]
      H.T. Yang, B. Jia, Z.C. Zhang, X.H. Qu, G.N. Li, W.J. Lin, D.H. Zhu, K.R. Dai, and Y.F. Zheng, Alloying design of biodegradable zinc as promising bone implants for load-bearing applications, Nat. Commun., 11(2020), art. No. 401. doi: 10.1038/s41467-019-14153-7
      [16]
      R. Yue, H. Huang, G.Z. Ke, H. Zhang, J. Pei, G.H. Xue, and G.Y. Yuan, Microstructure, mechanical properties and in vitro degradation behavior of novel Zn–Cu–Fe alloys, Mater. Charact., 134(2017), p. 114. doi: 10.1016/j.matchar.2017.10.015
      [17]
      Z.Z. Shi, W.S. Bai, X.F. Liu, H.J. Zhang, Y.X. Yin, and L.N. Wang, Significant refinement of coarse (Fe, Mn)Zn13 phase in biodegradable Zn–1Mn–0.1Fe alloy with minor addition of rare earth elements, Mater. Charact., 158(2019), art. No. 109993. doi: 10.1016/j.matchar.2019.109993
      [18]
      P.S. Lyu, W.L. Wang, and H.H. Zhang, Mold simulator study on the initial solidification of molten steel near the corner of continuous casting mold, Metall. Mater. Trans. B, 48(2017), No. 1, p. 247. doi: 10.1007/s11663-016-0853-0
      [19]
      Z.Z. Shi, J. Yu, X.F. Liu, and L.N. Wang, Fabrication and characterization of novel biodegradable Zn–Mn–Cu alloys, J. Mater. Sci. Technol., 34(2018), No. 6, p. 1008. doi: 10.1016/j.jmst.2017.11.026
      [20]
      Z.Z. Shi, H.Y. Li, J.Y. Xu, X.X. Gao, and X.F. Liu, Microstructure evolution of a high-strength low-alloy Zn–Mn–Ca alloy through casting, hot extrusion and warm caliber rolling, Mater. Sci. Eng. A, 771(2020), art. No. 138626. doi: 10.1016/j.msea.2019.138626
      [21]
      H.T. Chen, Z.Z. Shi, and X.F. Liu, Microstructure and mechanical properties of extruded and caliber rolled biodegradable Zn–0.8Mn–0.4Ag alloy with high ductility, Mater. Sci. Eng. A, 770(2020), art. No. 138543. doi: 10.1016/j.msea.2019.138543
      [22]
      Z.Z. Shi, J. Yu, and X.F. Liu, Microalloyed Zn–Mn alloys: From extremely brittle to extraordinarily ductile at room temperature, Mater. Des., 144(2018), p. 343. doi: 10.1016/j.matdes.2018.02.049
      [23]
      A. Gangan, M. ElSabbagh, M.A. Bedair, H.M. Ahmed, M. El-Sabbah, S.M. El-Bahy, and A. Fahmy, Influence of pH values on the electrochemical performance of low carbon steel coated by plasma thin SiOxCy films, Arabian J. Chem., 14(2021), No. 10, art. No. 103391. doi: 10.1016/j.arabjc.2021.103391
      [24]
      Z.Z. Shi, J. Yu, X.F. Liu, H.J. Zhang, D.W. Zhang, Y.X. Yin, and L.N. Wang, Effects of Ag, Cu or Ca addition on microstructure and comprehensive properties of biodegradable Zn–0.8Mn alloy, Mater. Sci. Eng. C, 99(2019), p. 969. doi: 10.1016/j.msec.2019.02.044
      [25]
      Z.Z. Shi, X.X. Gao, and X.F. Liu, FeZn13 intermetallic compound in biodegradable Zn–Fe alloy: Twinning and its shape effect, Mater. Charact., 164(2020), art. No. 110352. doi: 10.1016/j.matchar.2020.110352
      [26]
      S.Y. Liu, D. Kent, N. Doan, M. Dargusch, and G. Wang, Effects of deformation twinning on the mechanical properties of biodegradable Zn–Mg alloys, Bioact. Mater., 4(2019), p. 8. doi: 10.1016/j.bioactmat.2018.11.001
      [27]
      E. Mostaed, M. Sikora-Jasinska, A. Mostaed, S. Loffredo, A.G. Demir, B. Previtali, D. Mantovani, R. Beanland, and M. Vedani, Novel Zn-based alloys for biodegradable stent applications: Design, development and in vitro degradation, J. Mech. Behav. Biomed. Mater., 60(2016), p. 581. doi: 10.1016/j.jmbbm.2016.03.018
      [28]
      L.Q. Wang, Y.P. Ren, S.N. Sun, H. Zhao, S. Li, and G.W. Qin, Microstructure, mechanical properties and fracture behavior of as-extruded Zn–Mg binary alloys, Acta Metall. Sin., 30(2017), No. 10, p. 931. doi: 10.1007/s40195-017-0585-4
      [29]
      H.F. Li, X.H. Xie, Y.F. Zheng, Y. Cong, F.Y. Zhou, K.J. Qiu, X. Wang, S.H. Chen, L. Huang, L. Tian, and L. Qin, Development of biodegradable Zn–1X binary alloys with nutrient alloying elements Mg, Ca and Sr, Sci. Rep., 5(2015), art. No. 10719. doi: 10.1038/srep10719
      [30]
      I. Pospíšilová, V. Soukupová, and D. Vojtěch, Influence of calcium on the structure and mechanical properties of biodegradable zinc alloys, Mater. Sci. Forum, 891(2017), p. 400. doi: 10.4028/www.scientific.net/MSF.891.400
      [31]
      Z.B. Tang, J.L. Niu, H. Huang, H. Zhang, J. Pei, J.M. Ou, and G.Y. Yuan, Potential biodegradable Zn–Cu binary alloys developed for cardiovascular implant applications, J. Mech. Behav. Biomed. Mater., 72(2017), p. 182. doi: 10.1016/j.jmbbm.2017.05.013
      [32]
      P. Li, W.T. Zhang, J.T. Dai, A.B. Xepapadeas, E. Schweizer, D. Alexander, L. Scheideler, C. Zhou, H.J. Zhang, G.J. Wan, and J. Geis-Gerstorfer, Investigation of zinc–copper alloys as potential materials for craniomaxillofacial osteosynthesis implants, Mater. Sci. Eng. C, 103(2019), art. No. 109826. doi: 10.1016/j.msec.2019.109826
      [33]
      S.N. Sun, Y.P. Ren, L.Q. Wang, B. Yang, H.X. Li, and G.W. Qin, Abnormal effect of Mn addition on the mechanical properties of as-extruded Zn alloys, Mater. Sci. Eng. A, 701(2017), p. 129. doi: 10.1016/j.msea.2017.06.037
      [34]
      M. Sikora-Jasinska, E. Mostaed, A. Mostaed, R. Beanland, D. Mantovani, and M. Vedani, Fabrication, mechanical properties and in vitro degradation behavior of newly developed Zn–Ag alloys for degradable implant applications, Mater. Sci. Eng. C, 77(2017), p. 1170. doi: 10.1016/j.msec.2017.04.023
      [35]
      P.K. Bowen, J.M. Seitz, R.J. Guillory, J.P. Braykovich, S. Zhao, J. Goldman, and J.W. Drelich, Evaluation of wrought Zn–Al alloys (1, 3, and 5 wt% Al) through mechanical and in vivo testing for stent applications, J. Biomed. Mater. Res. Part B, 106(2018), No. 1, p. 245. doi: 10.1002/jbm.b.33850
      [36]
      S. Zhao, C.T. McNamara, P.K. Bowen, N. Verhun, J.P. Braykovich, J. Goldman, and J.W. Drelich, Structural characteristics and in vitro biodegradation of a novel Zn–Li alloy prepared by induction melting and hot rolling, Metall. Mater. Trans. A, 48(2017), No. 3, p. 1204. doi: 10.1007/s11661-016-3901-0
      [37]
      S.M. Zhu, C.C. Wu, G.N. Li, Y.F. Zheng, and J.F. Nie, Microstructure, mechanical properties and creep behaviour of extruded Zn–xLi (x = 0.1, 0.3 and 0.4) alloys for biodegradable vascular stent applications, Mater. Sci. Eng. A, 777(2020), art. No. 139082. doi: 10.1016/j.msea.2020.139082
      [38]
      Z.Y. Yin, Microstructural Evolution and Mechanical Properties of ZnTi Alloys for Biodegradable Stent Applications [Dissertation], Michigan Technological University, Houghton, 2017.

    Catalog


    • /

      返回文章
      返回