Cite this article as:

Jianjian Zhong, Lu Qin, Jianling Li, Zhe Yang, Kai Yang, and Mingjie Zhang, MOF-derived molybdenum selenide on Ti3C2Tx with superior capacitive performance for lithium-ion capacitors, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp.1061-1072. https://dx.doi.org/10.1007/s12613-022-2469-5
Jianjian Zhong, Lu Qin, Jianling Li, Zhe Yang, Kai Yang, and Mingjie Zhang, MOF-derived molybdenum selenide on Ti3C2Tx with superior capacitive performance for lithium-ion capacitors, Int. J. Miner. Metall. Mater., 29(2022), No. 5, pp.1061-1072. https://dx.doi.org/10.1007/s12613-022-2469-5
引用本文 PDF XML SpringerLink

锂离子电容器用MOF衍生硒化钼修饰的Ti3C2Tx负极材料性能研究

摘要: 二维碳化钛Ti3C2Tx材料由于其独特的层状结构、优异的电子电导率和高比表面积,在锂离子电容器中表现出优异的倍率性能和循环性能。然而,作为类石墨烯材料,在电化学长循环过程中氢键作用和范德华力作用引起Ti3C2Tx材料的重堆叠效应,导致材料比表面积减小,增加了材料层间的电解质离子扩散距离,恶化了材料的电化学反应动力学。因此,本文采用溶剂热法成功将MOF结构衍生的过渡金属硒化物MoSe2原位引入Ti3C2Tx材料结构中,以改善材料的电化学性能。MoSe2材料具有特殊的三层原子层堆叠结构,其快速的锂离子扩散能力、在材料层间的支柱作用以及Ti3C2Tx材料自身的杰出导电性相互协同作用,赋予材料优异的电化学反应动力学特性和高容量。Ti3C2Tx@MoSe2复合材料在150 mA·g–1电流密度下比容量超过300 mAh·g–1,并表现出优异的倍率特性,在1500 mA·g–1电流密度下具有150 mAh·g–1的比容量。同时,快速的电化学反应使Ti3C2Tx@MoSe2复合材料在2.0 mV·s–1扫速下表现出86.0%的优异电容贡献率。以复合材料作为负极构建的Ti3C2Tx@MoSe2//AC锂离子电容器也表现出优异的循环稳定性。

 

MOF-derived molybdenum selenide on Ti3C2Tx with superior capacitive performance for lithium-ion capacitors

Abstract: Two-dimensional Ti3C2Tx exhibits outstanding rate property and cycle performance in lithium-ion capacitors (LICs) due to its unique layered structure, excellent electronic conductivity, and high specific surface area. However, like graphene, Ti3C2Tx restacks during electrochemical cycling due to hydrogen bonding or van der Waals forces, leading to a decrease in the specific surface area and an increase in the diffusion distance of electrolyte ions between the interlayer of the material. Here, a transition metal selenide MoSe2 with a special three-stacked atomic layered structure, derived from metal–organic framework (MOF), is introduced into the Ti3C2Tx structure through a solvothermal method. The synergic effects of rapid Li+ diffusion and pillaring effect from the MoSe2 and excellent conductivity from the Ti3C2Tx sheets endow the material with excellent electrochemical reaction kinetics and capacity. The composite Ti3C2Tx@MoSe2 material exhibits a high capacity over 300 mAh·g−1 at 150 mA·g−1 and excellent rate property with a specific capacity of 150 mAh·g−1 at 1500 mA·g−1. Additionally, the material shows a superior capacitive contribution of 86.0% at 2.0 mV·s−1 due to the fast electrochemical reactions. A Ti3C2Tx@MoSe2//AC LIC device is also fabricated and exhibits stable cycle performance.

 

/

返回文章
返回