Cite this article as: |
Jingshu Yuan, Yao Zhang, Xiaoyan Zhang, Liang Zhao, Hanlin Shen, and Shengen Zhang, Template-free synthesis of core–shell Fe3O4@MoS2@mesoporous TiO2 magnetic photocatalyst for wastewater treatment, Int. J. Miner. Metall. Mater., 30(2023), No. 1, pp. 177-191. https://doi.org/10.1007/s12613-022-2473-9 |
张深根 E-mail: zhangshengen@mater.ustb.edu.cn
[1] |
J. Schneider, M. Matsuoka, M. Takeuchi, et al., Understanding TiO2 photocatalysis: Mechanisms and materials, Chem. Rev., 114(2014), No. 19, p. 9919. doi: 10.1021/cr5001892
|
[2] |
W. Li, A. Elzatahry, D. Aldhayan, and D. Zhao, Core–shell structured titanium dioxide nanomaterials for solar energy utilization, Chem. Soc. Rev., 47(2018), No. 22, p. 8203. doi: 10.1039/C8CS00443A
|
[3] |
V. Kumaravel, S. Mathew, J. Bartlett, and S.C. Pillai, Photocatalytic hydrogen production using metal doped TiO2: A review of recent advances, Appl. Catal. B, 244(2019), p. 1021. doi: 10.1016/j.apcatb.2018.11.080
|
[4] |
J. Sun, M. Zhang, Z.F. Wang, et al., Synthesis of anatase TiO2 with exposed {001} and {101} facets and photocatalytic activity, Rare Met., 38(2019), No. 4, p. 287. doi: 10.1007/s12598-014-0329-9
|
[5] |
M.Q. Hu, Z.P. Xing, Y. Cao, et al., Ti3+ self-doped mesoporous black TiO2/SiO2/g-C3N4 sheets heterojunctions as remarkable visible-lightdriven photocatalysts, Appl. Catal. B, 226(2018), p. 499. doi: 10.1016/j.apcatb.2017.12.069
|
[6] |
N. Guo, Y. Zeng, H.Y. Li, X.J. Xu, H.W. Yu, and X.R. Han, Novel mesoporous TiO2@g-C3N4 hollow core@shell heterojunction with enhanced photocatalytic activity for water treatment and H2 production under simulated sunlight, J. Hazard. Mater., 353(2018), p. 80. doi: 10.1016/j.jhazmat.2018.03.044
|
[7] |
X.F. Zeng, J.S. Wang, Y.N. Zhao, W.L. Zhang, and M.H. Wang, Construction of TiO2-pillared multilayer graphene nanocomposites as efficient photocatalysts for ciprofloxacin degradation, Int. J. Miner. Metall. Mater., 28(2021), No. 3, p. 503. doi: 10.1007/s12613-020-2193-y
|
[8] |
D.D. Wang, D.L. Han, Z. Shi, et al., Optimized design of three-dimensional multi-shell Fe3O4/SiO2/ZnO/ZnSe microspheres with type II heterostructure for photocatalytic applications, Appl. Catal. B, 227(2018), p. 61. doi: 10.1016/j.apcatb.2018.01.002
|
[9] |
T. Tatarchuk, I. Mironyuk, V. Kotsyubynsky, A. Shyichuk, M. Myslin, and V. Boychuk, Structure, morphology and adsorption properties of titania shell immobilized onto cobalt ferrite nanoparticle core, J. Mol. Liq., 297(2020), art. No. 111757. doi: 10.1016/j.molliq.2019.111757
|
[10] |
A. Kumar, M. Khan, L.P. Fang, and I.M.C. Lo, Visible-light-driven N-TiO2@SiO2@Fe3O4 magnetic nanophotocatalysts: Synthesis, characterization, and photocatalytic degradation of PPCPs, J. Hazard. Mater., 370(2019), p. 108. doi: 10.1016/j.jhazmat.2017.07.048
|
[11] |
A.M. Chávez, R.R. Solís, and F.J. Beltrán, Magnetic graphene TiO2-based photocatalyst for the removal of pollutants of emerging concern in water by simulated sunlight aided photocatalytic ozonation, Appl. Catal. B, 262(2020), art. No. 118275. doi: 10.1016/j.apcatb.2019.118275
|
[12] |
M.I. Rahmah, R.S. Sabry, and W.J. Aziz, Preparation and photocatalytic property of Fe2O3/ZnO composites with superhydrophobicity, Int. J. Miner. Metall. Mater., 28(2021), No. 6, p. 1072. doi: 10.1007/s12613-020-2096-y
|
[13] |
M.S. Abdel-Wahed, A.S. El-Kalliny, M.I. Badawy, M.S. Attia, and T.A. Gad-Allah, Core double-shell MnFe2O4@rGO@TiO2 superparamagnetic photocatalyst for wastewater treatment under solar light, Chem. Eng. J., 382(2020), art. No. 122936. doi: 10.1016/j.cej.2019.122936
|
[14] |
H. Zangeneh, A.A. Zinatizadeh, S. Zinadini, M. Feyzi, and D.W. Bahnemann, Preparation and characterization of a novel photocatalytic self-cleaning PES nanofiltration membrane by embedding a visible-driven photocatalyst boron doped-TiO2–SiO2/CoFe2O4 nanoparticles, Sep. Purif. Technol., 209(2019), p. 764. doi: 10.1016/j.seppur.2018.09.030
|
[15] |
T.B. Nguyen, C.P. Huang, and R.A. Doong, Photocatalytic degradation of bisphenol A over a ZnFe2O4/TiO2 nanocomposite under visible light, Sci. Total Environ., 646(2019), p. 745. doi: 10.1016/j.scitotenv.2018.07.352
|
[16] |
M.G. Sibi, D. Verma, and J. Kim, Magnetic core–shell nanocatalysts: Promising versatile catalysts for organic and photocatalytic reactions, Catal. Rev., 62(2020), No. 2, p. 163. doi: 10.1080/01614940.2019.1659555
|
[17] |
E. Mrotek, S. Dudziak, I. Malinowska, D. Pelczarski, Z. Ryżyńska, and A. Zielińska-Jurek, Improved degradation of etodolac in the presence of core–shell ZnFe2O4/SiO2/TiO2 magnetic photocatalyst, Sci. Total Environ., 724(2020), art. No. 138167. doi: 10.1016/j.scitotenv.2020.138167
|
[18] |
A. Pourzad, H.R. Sobhi, M. Behbahani, A. Esrafili, R.R. Kalantary, and M. Kermani, Efficient visible light-induced photocatalytic removal of paraquat using N-doped TiO2@SiO2@Fe3O4 nanocomposite, J. Mol. Liq., 299(2020), art. No. 112167. doi: 10.1016/j.molliq.2019.112167
|
[19] |
Z.C. Dai, D.N. Li, L. Chi, et al., Preparation of porphyrin sensitized three layers magnetic nanocomposite Fe3O4@SiO2@TiO2 as an efficient photocatalyst, Mater. Lett., 241(2019), p. 239. doi: 10.1016/j.matlet.2019.01.126
|
[20] |
A. Aghamali, M. Khosravi, H. Hamishehkar, N. Modirshahla, and M.A. Behnajady, Preparation of novel high performance recoverable and natural sunlight-driven nanocomposite photocatalyst of Fe3O4/C/TiO2/N-CQDs, Mater. Sci. Semicond. Process., 87(2018), p. 142. doi: 10.1016/j.mssp.2018.07.018
|
[21] |
W.X. Wang, K.J. Xiao, L. Zhu, Y.R. Yin, and Z.M. Wang, Graphene oxide supported titanium dioxide & ferroferric oxide hybrid, a magnetically separable photocatalyst with enhanced photocatalytic activity for tetracycline hydrochloride degradation, RSC Adv., 7(2017), No. 34, p. 21287. doi: 10.1039/C6RA28224E
|
[22] |
J.T. Bi, X. Huang, J.K. Wang, et al., Oil-phase cyclic magnetic adsorption to synthesize Fe3O4@C@TiO2-nanotube composites for simultaneous removal of Pb(II) and Rhodamine B, Chem. Eng. J., 366(2019), p. 50. doi: 10.1016/j.cej.2019.02.017
|
[23] |
B. MirzaHedayat, M. Noorisepehr, E. Dehghanifard, A. Esrafili, and R. Norozi, Evaluation of photocatalytic degradation of 2,4-Dinitrophenol from synthetic wastewater using Fe3O4@SiO2@TiO2/rGO magnetic nanoparticles, J. Mol. Liq., 264(2018), p. 571. doi: 10.1016/j.molliq.2018.05.102
|
[24] |
A. Kumar, M. Khan, X.K. Zeng, and I.M.C. Lo, Development of g-C3N4/TiO2/Fe3O4@SiO2 heterojunction via sol–gel route: A magnetically recyclable direct contact Z-scheme nanophotocatalyst for enhanced photocatalytic removal of ibuprofen from real sewage effluent under visible light, Chem. Eng. J., 353(2018), p. 645. doi: 10.1016/j.cej.2018.07.153
|
[25] |
N. Guo, H.Y. Li, X.J. Xu, and H.W. Yu, Hierarchical Fe3O4@MoS2/Ag3PO4 magnetic nanocomposites: Enhanced and stable photocatalytic performance for water purification under visible light irradiation, Appl. Surf. Sci., 389(2016), p. 227. doi: 10.1016/j.apsusc.2016.07.099
|
[26] |
D.Z. Lu, H.Q. Fan, K.K. Kondamareddy, et al., Highly efficient visible-light-induced photocatalytic production of hydrogen for magnetically retrievable Fe3O4@SiO2@MoS2/g-C3N4 hierarchical microspheres, ACS Sustainable Chem. Eng., 6(2018), No. 8, p. 9903. doi: 10.1021/acssuschemeng.8b01118
|
[27] |
Y.Q. Sun, J.B. Tan, H.H. Lin, et al., A facile strategy for the synthesis of ferroferric oxide/titanium dioxide/molybdenum disulfide heterostructures as a magnetically separable photocatalyst under visible-light, J. Colloid Interface Sci., 516(2018), p. 138. doi: 10.1016/j.jcis.2018.01.031
|
[28] |
X.F. Liu, Z.P. Xing, Y. Zhang, et al., Fabrication of 3D flower-like black N-TiO2−x@MoS2 for unprecedented-high visible-light-driven photocatalytic performance, Appl. Catal. B, 201(2017), p. 119. doi: 10.1016/j.apcatb.2016.08.031
|
[29] |
B. Chen, Y.H. Meng, J.W. Sha, C. Zhong, W.B. Hu, and N.Q. Zhao, Preparation of MoS2/TiO2 based nanocomposites for photocatalysis and rechargeable batteries: Progress, challenges, and perspective, Nanoscale, 10(2018), No. 1, p. 34. doi: 10.1039/C7NR07366F
|
[30] |
J.Z. Lyu, J.W. Shao, Y.H. Wang, et al., Construction of a porous core–shell homojunction for the photocatalytic degradation of antibiotics, Chem. Eng. J., 358(2019), p. 614. doi: 10.1016/j.cej.2018.10.085
|
[31] |
H.L. Xiong, L.L. Wu, Y. Liu, et al., Controllable synthesis of mesoporous TiO2 polymorphs with tunable crystal structure for enhanced photocatalytic H2 production, Adv. Energy Mater., 9(2019), No. 31, art. No. 1901634. doi: 10.1002/aenm.201901634
|
[32] |
H.L. Tang, Y. Ren, S.H. Wei, G. Liu, and X.X. Xu, Preparation of 3D ordered mesoporous anatase TiO2 and their photocatalytic activity, Rare Met., 38(2019), No. 5, p. 453. doi: 10.1007/s12598-019-01211-8
|
[33] |
Y.W. Ma, Y.F. Lu, G.T. Hai, et al., Bidentate carboxylate linked TiO2 with NH2-MIL-101(Fe) photocatalyst: A conjugation effect platform for high photocatalytic activity under visible light irradiation, Sci. Bull., 65(2020), No. 8, p. 658. doi: 10.1016/j.scib.2020.02.001
|
[34] |
M.A. Elkodous, G.S. El-Sayyad, A.E. Mohamed, et al., Layer-by-layer preparation and characterization of recyclable nanocomposite (CoXNi1−XFe2O4; X = 0.9/SiO2/TiO2), J. Mater. Sci. Mater. Electron., 30(2019), No. 9, p. 8312. doi: 10.1007/s10854-019-01149-8
|
[35] |
F.P. Ran, Y.L. Zou, Y.X. Xu, X.Y. Liu, and H.X. Zhang, Fe3O4@MoS2@PEI-facilitated enzyme tethering for efficient removal of persistent organic pollutants in water, Chem. Eng. J., 375(2019), art. No. 121947. doi: 10.1016/j.cej.2019.121947
|
[36] |
D.D. Wang, J.H. Yang, X.Y. Li, et al., Effect of thickness and microstructure of TiO2 shell on photocatalytic performance of magnetic separable Fe3O4/SiO2/mTiO2 core–shell composites, Phys. Status Solidi A, 214(2017), No. 3, art. No. 1600665. doi: 10.1002/pssa.201600665
|
[37] |
B.J. Guo, K. Yu, H. Fu, et al., Firework-shaped TiO2 microspheres embedded with few-layer MoS2 as an anode material for excellent performance lithium-ion batteries, J. Mater. Chem. A, 3(2015), No. 12, p. 6392. doi: 10.1039/C4TA06607C
|
[38] |
W. Li, M.B. Liu, S.S. Feng, et al., Template-free synthesis of uniform magnetic mesoporous TiO2 nanospindles for highly selective enrichment of phosphopeptides, Mater. Horiz., 1(2014), No. 4, p. 439. doi: 10.1039/c4mh00030g
|
[39] |
Y.Q. Yu, L. Yan, J.M. Cheng, and C.Y. Jing, Mechanistic insights into TiO2 thickness in Fe3O4@TiO2–GO composites for enrofloxacin photodegradation, Chem. Eng. J., 325(2017), p. 647. doi: 10.1016/j.cej.2017.05.092
|
[40] |
Y.P. Liu, Y.H. Li, F. Peng, et al., 2H- and 1T- mixed phase few-layer MoS2 as a superior to Pt co-catalyst coated on TiO2 nanorod arrays for photocatalytic hydrogen evolution, Appl. Catal. B, 241(2019), p. 236. doi: 10.1016/j.apcatb.2018.09.040
|
[41] |
A.D. Fortes, E. Suard, and K.S. Knight, Negative linear compressibility and massive anisotropic thermal expansion in methanol monohydrate, Science, 331(2011), No. 6018, p. 742. doi: 10.1126/science.1198640
|
[42] |
Z.Z. Li, H.Z. Li, S.J. Wang, F. Yang, and W. Zhou, Mesoporous black TiO2/MoS2/Cu2S hierarchical tandem heterojunctions toward optimized photothermal-photocatalytic fuel production, Chem. Eng. J., 427(2022), art. No. 131830. doi: 10.1016/j.cej.2021.131830
|
[43] |
L. Guo, Z. Yang, K. Marcus, et al., MoS2/TiO2 heterostructures as nonmetal plasmonic photocatalysts for highly efficient hydrogen evolution, Energy Environ. Sci., 11(2018), No. 1, p. 106. doi: 10.1039/C7EE02464A
|
[44] |
D.C. Nguyen, T.L.L. Doan, S. Prabhakaran, et al., Hierarchical Co and Nb dual-doped MoS2 nanosheets shelled micro-TiO2 hollow spheres as effective multifunctional electrocatalysts for HER, OER, and ORR, Nano Energy, 82(2021), art. No. 105750. doi: 10.1016/j.nanoen.2021.105750
|
[45] |
D.D. Wang, J.H. Yang, X.Y. Li, H.J. Zhai, J.H. Lang, and H. Song, Preparation of magnetic Fe3O4@SiO2@mTiO2–Au spheres with well-designed microstructure and superior photocatalytic activity, J. Mater. Sci., 51(2016), No. 21, p. 9602. doi: 10.1007/s10853-016-0167-2
|
[46] |
B. Peng, X.W. Meng, F.Q. Tang, X.L. Ren, D. Chen, and J. Ren, General synthesis and optical properties of monodisperse multifunctional metal-ion-doped TiO2 hollow particles, J. Phys. Chem. C, 113(2009), No. 47, p. 20240. doi: 10.1021/jp906937e
|
[47] |
J. Jin, J.G. Yu, D.P. Guo, C. Cui, and W. Ho, A hierarchical Z-scheme CdS–WO3 photocatalyst with enhanced CO2 reduction activity, Small, 11(2015), No. 39, p. 5262. doi: 10.1002/smll.201500926
|
[48] |
Z.F. Jiang, W.M. Wan, W. Wei, et al., Gentle way to build reduced titanium dioxide nanodots integrated with graphite-like carbon spheres: From DFT calculation to experimental measurement, Appl. Catal. B, 204(2017), p. 283. doi: 10.1016/j.apcatb.2016.11.044
|
[49] |
X. Bai, Y.L. Ji, M.Y. She, et al., Oxygen vacancy mediated charge transfer expediting over GQDs/TiO2 for enhancing photocatalytic removal of Cr (VI) and RhB synchronously, J. Alloys Compd., 891(2022), art. No. 161872. doi: 10.1016/j.jallcom.2021.161872
|
[50] |
Y. Zhang, J.S. Yuan, L. Zhao, et al., Boosting exciton dissociation and charge transfer in P-doped 2D porous g-C3N4 for enhanced H2 production and molecular oxygen activation, Ceram. Int., 48(2022), No. 3, p. 4031. doi: 10.1016/j.ceramint.2021.10.193
|
[51] |
S.Q. Yu, B. Han, Y.C. Lou, Z. Liu, G.D. Qian, and Z.Y. Wang, Rational design and fabrication of TiO2 nano heterostructure with multi-junctions for efficient photocatalysis, Int. J. Hydrogen Energy, 45(2020), No. 53, p. 28640. doi: 10.1016/j.ijhydene.2020.07.184
|
[52] |
L. Liu, S.L. Jiao, Y.T. Peng, and W. Zhou, A green design for lubrication: Multifunctional system containing Fe3O4@MoS2 nanohybrid, ACS Sustainable Chem. Eng., 6(2018), No. 6, p. 7372. doi: 10.1021/acssuschemeng.7b04801
|
[53] |
Y.F. Zhao, R. Wu, H. Yu, et al., Magnetic solid-phase extraction of sulfonamide antibiotics in water and animal-derived food samples using core–shell magnetite and molybdenum disulfide nanocomposite adsorbent, J. Chromatogr. A, 1610(2020), art. No. 460543. doi: 10.1016/j.chroma.2019.460543
|
[54] |
Y.X. Wang, L. Rao, P.F. Wang, Z.Y. Shi, and L.X. Zhang, Photocatalytic activity of N-TiO2/O-doped N vacancy g-C3N4 and the intermediates toxicity evaluation under tetracycline hydrochloride and Cr(VI) coexistence environment, Appl. Catal. B, 262(2020), art. No. 118308. doi: 10.1016/j.apcatb.2019.118308
|
[55] |
A. Krishnan, P.V. Vishwanathan, A.C. Mohan, R. Panchami, S. Viswanath, and A.V. Krishnan, Tuning of photocatalytic performance of CeO2–Fe2O3 composite by Sn-doping for the effective degradation of methlene blue (MB) and methyl orange (MO) dyes, Surf. Interfaces, 22(2021), art. No. 100808. doi: 10.1016/j.surfin.2020.100808
|
[56] |
M. Rafieezadeh and A.H. Kianfar, Synthesis and characterization of the magnetic submicrocube Fe3O4/TiO2/CuO as a reusable photocatalyst for the degradation of dyes under sunlight irradiation, Environ. Technol. Innov., 23(2021), art. No. 101756. doi: 10.1016/j.eti.2021.101756
|
[57] |
A. Raza, H.L. Shen, A.A. Haidry, and S.S. Cui, Hydrothermal synthesis of Fe3O4/TiO2/g-C3N4: Advanced photocatalytic application, Appl. Surf. Sci., 488(2019), p. 887. doi: 10.1016/j.apsusc.2019.05.210
|
[58] |
N. Shao, J.N. Wang, D.D. Wang, and P. Corvini, Preparation of three-dimensional Ag3PO4/TiO2@MoS2 for enhanced visible-light photocatalytic activity and anti-photocorrosion, Appl. Catal. B, 203(2017), p. 964. doi: 10.1016/j.apcatb.2016.11.008
|
[59] |
W. Ou, J.Q. Pan, Y.Y. Liu, et al., Two-dimensional ultrathin MoS2-modified black Ti3+–TiO2 nanotubes for enhanced photocatalytic water splitting hydrogen production, J. Energy Chem., 43(2020), p. 188. doi: 10.1016/j.jechem.2019.08.020
|
[60] |
F.L. Wang, Y.F. Wang, Y.P. Feng, et al., Novel ternary photocatalyst of single atom-dispersed silver and carbon quantum dots co-loaded with ultrathin g-C3N4 for broad spectrum photocatalytic degradation of naproxen, Appl. Catal. B, 221(2018), p. 510. doi: 10.1016/j.apcatb.2017.09.055
|
[61] |
Y. Bai, L.Q. Ye, T. Chen, et al., Facet-dependent photocatalytic N2 fixation of bismuth-rich Bi5O7I nanosheets, ACS Appl. Mater. Interfaces, 8(2016), No. 41, p. 27661. doi: 10.1021/acsami.6b08129
|
[62] |
C.Y. Liu, Y.H. Zhang, F. Dong, et al., Chlorine intercalation in graphitic carbon nitride for efficient photocatalysis, Appl. Catal. B, 203(2017), p. 465. doi: 10.1016/j.apcatb.2016.10.002
|
[63] |
Z. Zhou, J.X. Gao, G.S. Zhang, et al., Optimizing graphene–TiO2 interface properties via Fermi level modulation for photocatalytic degradation of volatile organic compounds, Ceram. Int., 46(2020), No. 5, p. 5887. doi: 10.1016/j.ceramint.2019.11.040
|
[64] |
J.Z. Ma, C.X. Wang, and H. He, Enhanced photocatalytic oxidation of NO over g-C3N4–TiO2 under UV and visible light, Appl. Catal. B, 184(2016), p. 28. doi: 10.1016/j.apcatb.2015.11.013
|